morriszms's picture
Upload folder using huggingface_hub
a4f276d verified
metadata
license: apache-2.0
tags:
  - TensorBlock
  - GGUF
base_model: HIT-SCIR/Chinese-Mixtral-8x7B
model-index:
  - name: Chinese-Mixtral-8x7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 63.57
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HIT-SCIR/Chinese-Mixtral-8x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.98
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HIT-SCIR/Chinese-Mixtral-8x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 70.95
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HIT-SCIR/Chinese-Mixtral-8x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 45.86
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HIT-SCIR/Chinese-Mixtral-8x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 82.08
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HIT-SCIR/Chinese-Mixtral-8x7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 51.71
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=HIT-SCIR/Chinese-Mixtral-8x7B
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

HIT-SCIR/Chinese-Mixtral-8x7B - GGUF

This repo contains GGUF format model files for HIT-SCIR/Chinese-Mixtral-8x7B.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template


Model file specification

Filename Quant type File Size Description
Chinese-Mixtral-8x7B-Q2_K.gguf Q2_K 17.429 GB smallest, significant quality loss - not recommended for most purposes
Chinese-Mixtral-8x7B-Q3_K_S.gguf Q3_K_S 20.561 GB very small, high quality loss
Chinese-Mixtral-8x7B-Q3_K_M.gguf Q3_K_M 22.675 GB very small, high quality loss
Chinese-Mixtral-8x7B-Q3_K_L.gguf Q3_K_L 24.298 GB small, substantial quality loss
Chinese-Mixtral-8x7B-Q4_0.gguf Q4_0 26.586 GB legacy; small, very high quality loss - prefer using Q3_K_M
Chinese-Mixtral-8x7B-Q4_K_S.gguf Q4_K_S 26.888 GB small, greater quality loss
Chinese-Mixtral-8x7B-Q4_K_M.gguf Q4_K_M 28.591 GB medium, balanced quality - recommended
Chinese-Mixtral-8x7B-Q5_0.gguf Q5_0 32.386 GB legacy; medium, balanced quality - prefer using Q4_K_M
Chinese-Mixtral-8x7B-Q5_K_S.gguf Q5_K_S 32.386 GB large, low quality loss - recommended
Chinese-Mixtral-8x7B-Q5_K_M.gguf Q5_K_M 33.385 GB large, very low quality loss - recommended
Chinese-Mixtral-8x7B-Q6_K.gguf Q6_K 38.549 GB very large, extremely low quality loss
Chinese-Mixtral-8x7B-Q8_0.gguf Q8_0 49.844 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Chinese-Mixtral-8x7B-GGUF --include "Chinese-Mixtral-8x7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Chinese-Mixtral-8x7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'