PIXIE-Spell-Preview-1.7B

PIXIE-Spell-Preview-1.7B is a decoder-based embedding model trained on Korean and English dataset, developed by TelePIX Co., Ltd. PIXIE stands for TelePIX Intelligent Embedding, representing TelePIXโ€™s high-performance embedding technology. This model is specifically optimized for semantic retrieval tasks in Korean and English, and demonstrates strong performance in aerospace domain applications. Through extensive fine-tuning and domain-specific evaluation, PIXIE shows robust retrieval quality for real-world use cases such as document understanding, technical QA, and semantic search in aerospace and related high-precision fields. It also performs competitively across a wide range of open-domain Korean and English retrieval benchmarks, making it a versatile foundation for multilingual semantic search systems.

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 2048 dimensions
  • Similarity Function: Cosine Similarity
  • Language: Multilingual โ€” optimized for high performance in Korean and English
  • Domain Specialization: Aerospace semantic search
  • License: apache-2.0

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
  (1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
  (2): Normalize()
)

Quality Benchmarks

PIXIE-Spell-Preview-1.7B is a multilingual embedding model specialized for Korean and English retrieval tasks. It delivers consistently strong performance across a diverse set of domain-specific and open-domain benchmarks in both languages, demonstrating its effectiveness in real-world semantic search applications. The table below presents the retrieval performance of several embedding models evaluated on a variety of Korean and English benchmarks. We report Normalized Discounted Cumulative Gain (NDCG) scores, which measure how well a ranked list of documents aligns with ground truth relevance. Higher values indicate better retrieval quality.

  • Avg. NDCG: Average of NDCG@1, @3, @5, and @10 across all benchmark datasets.
  • NDCG@k: Relevance quality of the top-k retrieved results.

All evaluations were conducted using the open-source Korean-MTEB-Retrieval-Evaluators codebase to ensure consistent dataset handling, indexing, retrieval, and NDCG@k computation across models.

6 Datasets of MTEB (Korean)

Our model, telepix/PIXIE-Spell-Preview-1.7B, achieves strong performance across most metrics and benchmarks, demonstrating strong generalization across domains such as multi-hop QA, long-document retrieval, public health, and e-commerce.

Model Name # params Avg. NDCG NDCG@1 NDCG@3 NDCG@5 NDCG@10
telepix/PIXIE-Spell-Preview-1.7B 1.7B 0.7567 0.7149 0.7541 0.7696 0.7882
telepix/PIXIE-Spell-Preview-0.6B 0.6B 0.7280 0.6804 0.7258 0.7448 0.7612
telepix/PIXIE-Rune-Preview 0.5B 0.7383 0.6936 0.7356 0.7545 0.7698
telepix/PIXIE-Splade-Preview 0.1B 0.7253 0.6799 0.7217 0.7416 0.7579
nlpai-lab/KURE-v1 0.5B 0.7312 0.6826 0.7303 0.7478 0.7642
BAAI/bge-m3 0.5B 0.7126 0.6613 0.7107 0.7301 0.7483
Snowflake/snowflake-arctic-embed-l-v2.0 0.5B 0.7050 0.6570 0.7015 0.7226 0.7390
Qwen/Qwen3-Embedding-0.6B 0.6B 0.6872 0.6423 0.6833 0.7017 0.7215
jinaai/jina-embeddings-v3 0.5B 0.6731 0.6224 0.6715 0.6899 0.7088
Alibaba-NLP/gte-multilingual-base 0.3B 0.6679 0.6068 0.6673 0.6892 0.7084
openai/text-embedding-3-large N/A 0.6465 0.5895 0.6467 0.6646 0.6853

Descriptions of the benchmark datasets used for evaluation are as follows:

  • Ko-StrategyQA
    A Korean multi-hop open-domain question answering dataset designed for complex reasoning over multiple documents.
  • AutoRAGRetrieval
    A domain-diverse retrieval dataset covering finance, government, healthcare, legal, and e-commerce sectors.
  • MIRACLRetrieval
    A document retrieval benchmark built on Korean Wikipedia articles.
  • PublicHealthQA
    A retrieval dataset focused on medical and public health topics.
  • BelebeleRetrieval
    A dataset for retrieving relevant content from web and news articles in Korean.
  • MultiLongDocRetrieval
    A long-document retrieval benchmark based on Korean Wikipedia and mC4 corpus.

Tip: While many benchmark datasets are available for evaluation, in this project we chose to use only those that contain clean positive documents for each query. Keep in mind that a benchmark dataset is just that a benchmark. For real-world applications, it is best to construct an evaluation dataset tailored to your specific domain and evaluate embedding models, such as PIXIE, in that environment to determine the most suitable one.

7 Datasets of BEIR (English)

Our model, telepix/PIXIE-Spell-Preview-1.7B, achieves strong performance on a wide range of tasks, including fact verification, multi-hop question answering, financial QA, and scientific document retrieval, demonstrating competitive generalization across diverse domains.

Model Name # params Avg. NDCG NDCG@1 NDCG@3 NDCG@5 NDCG@10
telepix/PIXIE-Spell-Preview-1.7B 1.7B 0.5630 0.5446 0.5529 0.5660 0.5885
telepix/PIXIE-Spell-Preview-0.6B 0.6B 0.5354 0.5208 0.5241 0.5376 0.5589
telepix/PIXIE-Rune-Preview 0.5B 0.5781 0.5691 0.5663 0.5791 0.5979
Snowflake/snowflake-arctic-embed-l-v2.0 0.5B 0.5812 0.5725 0.5705 0.5811 0.6006
Qwen/Qwen3-Embedding-0.6B 0.6B 0.5558 0.5321 0.5451 0.5620 0.5839
Alibaba-NLP/gte-multilingual-base 0.3B 0.5541 0.5446 0.5426 0.5574 0.5746
BAAI/bge-m3 0.5B 0.5318 0.5078 0.5231 0.5389 0.5573
nlpai-lab/KURE-v1 0.5B 0.5272 0.5017 0.5171 0.5353 0.5548
jinaai/jina-embeddings-v3 0.6B 0.4482 0.4116 0.4379 0.4573 0.4861

Descriptions of the benchmark datasets used for evaluation are as follows:

  • ArguAna
    A dataset for argument retrieval based on claim-counterclaim pairs from online debate forums.
  • FEVER
    A fact verification dataset using Wikipedia for evidence-based claim validation.
  • FiQA-2018
    A retrieval benchmark tailored to the finance domain with real-world questions and answers.
  • HotpotQA
    A multi-hop open-domain QA dataset requiring reasoning across multiple documents.
  • MSMARCO
    A large-scale benchmark using real Bing search queries and corresponding web documents.
  • NQ
    A Google QA dataset where user questions are answered using Wikipedia articles.
  • SCIDOCS
    A citation-based document retrieval dataset focused on scientific papers.

Direct Use (Semantic Search)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer
  
# Load the model
model_name = 'telepix/PIXIE-Spell-Preview-1.7B'
model = SentenceTransformer(model_name)

# Define the queries and documents
queries = [
        "ํ…”๋ ˆํ”ฝ์Šค๋Š” ์–ด๋–ค ์‚ฐ์—… ๋ถ„์•ผ์—์„œ ์œ„์„ฑ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜๋‚˜์š”?",
        "๊ตญ๋ฐฉ ๋ถ„์•ผ์— ์–ด๋–ค ์œ„์„ฑ ์„œ๋น„์Šค๊ฐ€ ์ œ๊ณต๋˜๋‚˜์š”?",
        "ํ…”๋ ˆํ”ฝ์Šค์˜ ๊ธฐ์ˆ  ์ˆ˜์ค€์€ ์–ด๋А ์ •๋„์ธ๊ฐ€์š”?",
]
documents = [
        "ํ…”๋ ˆํ”ฝ์Šค๋Š” ํ•ด์–‘, ์ž์›, ๋†์—… ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์œ„์„ฑ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.",
        "์ •์ฐฐ ๋ฐ ๊ฐ์‹œ ๋ชฉ์ ์˜ ์œ„์„ฑ ์˜์ƒ์„ ํ†ตํ•ด ๊ตญ๋ฐฉ ๊ด€๋ จ ์ •๋ฐ€ ๋ถ„์„ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.",
        "TelePIX์˜ ๊ด‘ํ•™ ํƒ‘์žฌ์ฒด ๋ฐ AI ๋ถ„์„ ๊ธฐ์ˆ ์€ Global standard๋ฅผ ์ƒํšŒํ•˜๋Š” ์ˆ˜์ค€์œผ๋กœ ํ‰๊ฐ€๋ฐ›๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.",
        "ํ…”๋ ˆํ”ฝ์Šค๋Š” ์šฐ์ฃผ์—์„œ ์ˆ˜์ง‘ํ•œ ์ •๋ณด๋ฅผ ๋ถ„์„ํ•˜์—ฌ '์šฐ์ฃผ ๊ฒฝ์ œ(Space Economy)'๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐ€์น˜๋ฅผ ์ฐฝ์ถœํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.",
        "ํ…”๋ ˆํ”ฝ์Šค๋Š” ์œ„์„ฑ ์˜์ƒ ํš๋“๋ถ€ํ„ฐ ๋ถ„์„, ์„œ๋น„์Šค ์ œ๊ณต๊นŒ์ง€ ์ „ ์ฃผ๊ธฐ๋ฅผ ์•„์šฐ๋ฅด๋Š” ์†”๋ฃจ์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.",
]

# Compute embeddings: use `prompt_name="query"` to encode queries!
query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

# Compute cosine similarity scores
scores = model.similarity(query_embeddings, document_embeddings)

# Output the results
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)

License

The PIXIE-Spell-Preview-1.7B model is licensed under Apache License 2.0.

Citation

@software{TelePIX-PIXIE-Spell-Preview-1.7B,
  title={PIXIE-Spell-Preview-1.7B},
  author={TelePIX AI Research Team and Bongmin Kim},
  year={2025},
  url={https://huggingface.co/telepix/PIXIE-Spell-Preview-1.7B}
}

Contact

If you have any suggestions or questions about the PIXIE, please reach out to the authors at [email protected].

Downloads last month
-
Safetensors
Model size
1.72B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Collection including telepix/PIXIE-Spell-Preview-1.7B