Merging stuff to make a potato. Idk about it, might delete later.

Merge of MiniMerlin via Task arithmetic using mergekit. There was no goal except merging. Interest in the outcome tho. I might need to fine-tune it more.

FT on more french data (Merlin).

Je pense qu'il s'agit du meilleur model français en 3B. Essayez le.

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch

model = AutoModelForCausalLM.from_pretrained(
    "teilomillet/Potato-3B",
    revision="0.1",
    return_dict=True,
    torch_dtype=torch.bfloat16,
    device_map='auto'
)

tokenizer = AutoTokenizer.from_pretrained("teilomillet/Potato-3B")
tokenizer.pad_token = tokenizer.eos_token

text = "[|User|] Comment faire un bon plat ? </s>[|Assistant|]"
inputs = tokenizer(text, return_tensors="pt").to(0)

outputs = model.generate(**inputs, max_new_tokens=800)
print(tokenizer.decode(outputs[0], skip_special_tokens=False))

#merge

Downloads last month
1,049
Safetensors
Model size
3.02B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for teilomillet/Potato-3B

Adapters
1 model
Quantizations
1 model

Collection including teilomillet/Potato-3B