output_main

This model is a fine-tuned version of roneneldan/TinyStories-1Layer-21M on the roneneldan/TinyStories dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6604
  • Accuracy: 0.5791
  • Multicode K: 1
  • Dead Code Fraction/layer0: 0.1982
  • Mse/layer0: 6073.8637
  • Input Norm/layer0: 0.7182
  • Output Norm/layer0: 76.7891

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 96
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • training_steps: 100000

Training results

Training Loss Epoch Step Validation Loss Accuracy Multicode K Dead Code Fraction/layer0 Mse/layer0 Input Norm/layer0 Output Norm/layer0
2.2319 0.1 1000 1.9134 0.5317 1 1.0 0.0 0.0 0.0
1.8521 0.21 2000 1.7990 0.5495 1 1.0 0.0 0.0 0.0
1.7879 0.31 3000 1.7739 0.5557 1 1.0 0.0 0.0 0.0
1.7728 0.42 4000 1.7666 0.5564 1 1.0 0.0 0.0 0.0
1.7686 0.52 5000 1.7609 0.5595 1 1.0 0.0 0.0 0.0
1.7635 0.63 6000 1.7555 0.5598 1 1.0 0.0 0.0 0.0
1.7523 0.73 7000 1.7383 0.5632 1 1.0 0.0 0.0 0.0
1.7471 0.83 8000 1.7368 0.5643 1 1.0 0.0 0.0 0.0
1.7404 0.94 9000 1.7277 0.5659 1 1.0 0.0 0.0 0.0
1.728 1.04 10000 1.7290 0.5647 1 1.0 0.0 0.0 0.0
1.7195 1.15 11000 1.7244 0.5667 1 1.0 0.0 0.0 0.0
1.7198 1.25 12000 1.7230 0.5671 1 1.0 0.0 0.0 0.0
1.7171 1.36 13000 1.7177 0.5689 1 1.0 0.0 0.0 0.0
1.7185 1.46 14000 1.7150 0.5688 1 1.0 0.0 0.0 0.0
1.7149 1.56 15000 1.7125 0.5695 1 1.0 0.0 0.0 0.0
1.7105 1.67 16000 1.7097 0.5695 1 1.0 0.0 0.0 0.0
1.7107 1.77 17000 1.7073 0.5689 1 1.0 0.0 0.0 0.0
1.7113 1.88 18000 1.7025 0.5712 1 1.0 0.0 0.0 0.0
1.7078 1.98 19000 1.7048 0.5702 1 1.0 0.0 0.0 0.0
1.693 2.09 20000 1.7045 0.5696 1 1.0 0.0 0.0 0.0
1.6935 2.19 21000 1.7068 0.5695 1 1.0 0.0 0.0 0.0
1.6962 2.29 22000 1.7046 0.5687 1 1.0 0.0 0.0 0.0
1.6954 2.4 23000 1.7019 0.5706 1 1.0 0.0 0.0 0.0
1.6933 2.5 24000 1.7002 0.5725 1 1.0 0.0 0.0 0.0
1.6942 2.61 25000 1.6983 0.5717 1 1.0 0.0 0.0 0.0
1.6935 2.71 26000 1.6938 0.5730 1 1.0 0.0 0.0 0.0
1.6928 2.82 27000 1.6978 0.5719 1 1.0 0.0 0.0 0.0
1.6927 2.92 28000 1.6935 0.5715 1 1.0 0.0 0.0 0.0
1.6855 3.02 29000 1.6978 0.5726 1 1.0 0.0 0.0 0.0
1.6773 3.13 30000 1.6951 0.5732 1 1.0 0.0 0.0 0.0
1.6788 3.23 31000 1.6926 0.5728 1 1.0 0.0 0.0 0.0
1.6813 3.34 32000 1.6920 0.5726 1 1.0 0.0 0.0 0.0
1.6782 3.44 33000 1.6926 0.5733 1 1.0 0.0 0.0 0.0
1.6801 3.55 34000 1.6894 0.5719 1 1.0 0.0 0.0 0.0
1.6796 3.65 35000 1.6890 0.5728 1 1.0 0.0 0.0 0.0
1.6768 3.75 36000 1.6882 0.5722 1 1.0 0.0 0.0 0.0
1.6802 3.86 37000 1.6872 0.5732 1 1.0 0.0 0.0 0.0
1.6809 3.96 38000 1.6855 0.5750 1 1.0 0.0 0.0 0.0
1.6701 4.07 39000 1.6886 0.5742 1 1.0 0.0 0.0 0.0
1.6646 4.17 40000 1.6890 0.5734 1 1.0 0.0 0.0 0.0
1.669 4.28 41000 1.6859 0.5747 1 1.0 0.0 0.0 0.0
1.6713 4.38 42000 1.6867 0.5740 1 1.0 0.0 0.0 0.0
1.6693 4.48 43000 1.6821 0.5750 1 1.0 0.0 0.0 0.0
1.6693 4.59 44000 1.6822 0.5747 1 1.0 0.0 0.0 0.0
1.6692 4.69 45000 1.6801 0.5745 1 1.0 0.0 0.0 0.0
1.6703 4.8 46000 1.6834 0.5761 1 1.0 0.0 0.0 0.0
1.6677 4.9 47000 1.6819 0.5756 1 1.0 0.0 0.0 0.0
1.6682 5.01 48000 1.6778 0.5752 1 1.0 0.0 0.0 0.0
1.6547 5.11 49000 1.6825 0.5751 1 1.0 0.0 0.0 0.0
1.6566 5.21 50000 1.6825 0.5758 1 1.0 0.0 0.0 0.0
1.6605 5.32 51000 1.6814 0.5746 1 1.0 0.0 0.0 0.0
1.6603 5.42 52000 1.6768 0.5755 1 1.0 0.0 0.0 0.0
1.6595 5.53 53000 1.6757 0.5753 1 1.0 0.0 0.0 0.0
1.6603 5.63 54000 1.6769 0.5738 1 1.0 0.0 0.0 0.0
1.662 5.74 55000 1.6758 0.5759 1 1.0 0.0 0.0 0.0
1.6602 5.84 56000 1.6771 0.5757 1 1.0 0.0 0.0 0.0
1.6624 5.94 57000 1.6749 0.5770 1 1.0 0.0 0.0 0.0
1.6527 6.05 58000 1.6791 0.5758 1 1.0 0.0 0.0 0.0
1.6474 6.15 59000 1.6763 0.5773 1 1.0 0.0 0.0 0.0
1.6494 6.26 60000 1.6765 0.5761 1 1.0 0.0 0.0 0.0
1.6539 6.36 61000 1.6741 0.5764 1 1.0 0.0 0.0 0.0
1.6539 6.47 62000 1.6752 0.5768 1 1.0 0.0 0.0 0.0
1.6529 6.57 63000 1.6737 0.5775 1 1.0 0.0 0.0 0.0
1.6533 6.67 64000 1.6725 0.5758 1 1.0 0.0 0.0 0.0
1.653 6.78 65000 1.6722 0.5774 1 1.0 0.0 0.0 0.0
1.6522 6.88 66000 1.6726 0.5762 1 1.0 0.0 0.0 0.0
1.6528 6.99 67000 1.6726 0.5768 1 1.0 0.0 0.0 0.0
1.6439 7.09 68000 1.6728 0.5771 1 1.0 0.0 0.0 0.0
1.6403 7.19 69000 1.6703 0.5758 1 1.0 0.0 0.0 0.0
1.6447 7.3 70000 1.6697 0.5772 1 1.0 0.0 0.0 0.0
1.6458 7.4 71000 1.6694 0.5777 1 1.0 0.0 0.0 0.0
1.6447 7.51 72000 1.6716 0.5771 1 1.0 0.0 0.0 0.0
1.6449 7.61 73000 1.6680 0.5779 1 1.0 0.0 0.0 0.0
1.6458 7.72 74000 1.6683 0.5779 1 1.0 0.0 0.0 0.0
1.6447 7.82 75000 1.6681 0.5778 1 1.0 0.0 0.0 0.0
1.6451 7.92 76000 1.6677 0.5781 1 1.0 0.0 0.0 0.0
1.6418 8.03 77000 1.6665 0.5789 1 1.0 0.0 0.0 0.0
1.6361 8.13 78000 1.6684 0.5779 1 1.0 0.0 0.0 0.0
1.636 8.24 79000 1.6687 0.5786 1 1.0 0.0 0.0 0.0
1.6357 8.34 80000 1.6670 0.5790 1 1.0 0.0 0.0 0.0
1.6379 8.45 81000 1.6658 0.5788 1 1.0 0.0 0.0 0.0
1.6405 8.55 82000 1.6661 0.5788 1 1.0 0.0 0.0 0.0
1.6378 8.65 83000 1.6650 0.5789 1 1.0 0.0 0.0 0.0
1.6386 8.76 84000 1.6650 0.5784 1 1.0 0.0 0.0 0.0
1.638 8.86 85000 1.6644 0.5785 1 1.0 0.0 0.0 0.0
1.6374 8.97 86000 1.6635 0.5777 1 1.0 0.0 0.0 0.0
1.6298 9.07 87000 1.6647 0.5785 1 1.0 0.0 0.0 0.0
1.6302 9.18 88000 1.6649 0.5787 1 1.0 0.0 0.0 0.0
1.6315 9.28 89000 1.6651 0.5782 1 1.0 0.0 0.0 0.0
1.631 9.38 90000 1.6636 0.5788 1 1.0 0.0 0.0 0.0
1.6316 9.49 91000 1.6627 0.5782 1 1.0 0.0 0.0 0.0
1.6286 9.59 92000 1.6646 0.5783 1 1.0 0.0 0.0 0.0
1.6304 9.7 93000 1.6632 0.5801 1 1.0 0.0 0.0 0.0
1.6298 9.8 94000 1.6623 0.5800 1 1.0 0.0 0.0 0.0
1.6309 9.91 95000 1.6620 0.5800 1 1.0 0.0 0.0 0.0
1.6302 10.01 96000 1.6602 0.5801 1 1.0 0.0 0.0 0.0
1.6242 10.11 97000 1.6610 0.5786 1 1.0 0.0 0.0 0.0
1.6258 10.22 98000 1.6605 0.5795 1 1.0 0.0 0.0 0.0
1.6234 10.32 99000 1.6605 0.5791 1 1.0 0.0 0.0 0.0
1.6245 10.43 100000 1.6604 0.5791 1 1.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
52
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Dataset used to train taufeeque/TinyStories-1Layer-21M-Codebook

Evaluation results