See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: jhflow/mistral7b-lora-multi-turn-v2
bf16: auto
dataset_prepared_path: last_run_prepared
datasets:
- data_files:
- 86db9326ad63cb9d_train_data.json
ds_type: json
format: custom
path: 86db9326ad63cb9d_train_data.json
type:
field: null
field_input: null
field_instruction: title
field_output: content
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 2
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: taopanda/61e56400-6b71-4560-9310-ebae94713f72
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
loss_watchdog_patience: 3
loss_watchdog_threshold: 5.0
lr_scheduler: cosine
micro_batch_size: 2
model_type: MistralForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out/taopanda-4_d971ef8e-ddfc-4982-8273-bc0a7fdf9c0b
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
seed: 89403
sequence_len: 8192
special_tokens: null
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-4_d971ef8e-ddfc-4982-8273-bc0a7fdf9c0b
wandb_project: subnet56
wandb_runid: taopanda-4_d971ef8e-ddfc-4982-8273-bc0a7fdf9c0b
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
61e56400-6b71-4560-9310-ebae94713f72
This model is a fine-tuned version of jhflow/mistral7b-lora-multi-turn-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9842
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 89403
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.2763 | 0.0100 | 1 | 2.2024 |
2.0098 | 0.4975 | 50 | 2.0315 |
2.0265 | 0.9950 | 100 | 2.0004 |
1.9396 | 1.4677 | 150 | 1.9877 |
1.9331 | 1.9652 | 200 | 1.9842 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for taopanda/61e56400-6b71-4560-9310-ebae94713f72
Base model
jhflow/mistral7b-lora-multi-turn-v2