Automatic correction of README.md metadata. Contact [email protected] for any question
7447c62
language: Bengali | |
datasets: | |
- OpenSLR | |
metrics: | |
- wer | |
tags: | |
- audio | |
- automatic-speech-recognition | |
- speech | |
- xlsr-fine-tuning-week | |
license: cc-by-sa-4.0 | |
model-index: | |
- name: XLSR Wav2Vec2 Bengali by Tanmoy Sarkar | |
results: | |
- task: | |
name: Speech Recognition | |
type: automatic-speech-recognition | |
dataset: | |
name: OpenSLR | |
type: OpenSLR | |
args: ben | |
metrics: | |
- name: Test WER | |
type: wer | |
value: 88.58 | |
# Wav2Vec2-Large-XLSR-Bengali | |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using the [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/). | |
When using this model, make sure that your speech input is sampled at 16kHz. | |
## Usage | |
Dataset must be downloaded from [this website](https://www.openslr.org/53/) and preprocessed accordingly. For example 1250 test samples has been chosen. | |
```python | |
import pandas as pd | |
test_dataset = pd.read_csv('utt_spk_text.tsv', sep='\\t', header=None)[60000:61250] | |
test_dataset.columns = ["audio_path", "__", "label"] | |
test_dataset = test_data.drop("__", axis=1) | |
def add_file_path(text): | |
path = "data/" + text[:2] + "/" + text + '.flac' | |
return path | |
test_dataset['audio_path'] = test_dataset['audio_path'].map(lambda x: add_file_path(x)) | |
``` | |
The model can be used directly (without a language model) as follows: | |
```python | |
import torch | |
import torchaudio | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali") | |
model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali") | |
resampler = torchaudio.transforms.Resample(48_000, 16_000) | |
# Preprocessing the datasets. | |
# We need to read the aduio files as arrays | |
def speech_file_to_array_fn(batch): | |
speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) | |
batch["speech"] = resampler(speech_array).squeeze().numpy() | |
return batch | |
test_dataset = test_dataset.map(speech_file_to_array_fn) | |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
print("Prediction:", processor.batch_decode(predicted_ids)) | |
print("Reference:", test_dataset["label"][:2]) | |
``` | |
## Evaluation | |
The model can be evaluated as follows on the Bengali test data of OpenSLR. | |
```python | |
import torch | |
import torchaudio | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import re | |
wer = load_metric("wer") | |
processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali") | |
model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali") | |
model.to("cuda") | |
resampler = torchaudio.transforms.Resample(48_000, 16_000) | |
# Preprocessing the datasets. | |
# We need to read the aduio files as arrays | |
def speech_file_to_array_fn(batch): | |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["label"]).lower() | |
speech_array, sampling_rate = torchaudio.load(batch["path"]) | |
batch["speech"] = resampler(speech_array).squeeze().numpy() | |
return batch | |
test_dataset = test_dataset.map(speech_file_to_array_fn) | |
# Preprocessing the datasets. | |
# We need to read the aduio files as arrays | |
def evaluate(batch): | |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits | |
pred_ids = torch.argmax(logits, dim=-1) | |
batch["pred_strings"] = processor.batch_decode(pred_ids) | |
return batch | |
result = test_dataset.map(evaluate, batched=True, batch_size=8) | |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) | |
``` | |
**Test Result**: 88.58 % | |
## Training | |
The script used for training can be found [Bengali ASR Fine Tuning Wav2Vec2](https://colab.research.google.com/drive/1Bkc5C_cJV9BeS0FD0MuHyayl8hqcbdRZ?usp=sharing) | |