File size: 2,705 Bytes
bc9465f b6103c6 b5bb4ab bc9465f 5fd1d4e c76c872 bc9465f 5fd1d4e bc9465f 5fd1d4e bbf48c6 5fd1d4e bbf48c6 5fd1d4e bbf48c6 ff215fd bbf48c6 bc9465f 5fd1d4e bc9465f 5fd1d4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apple-ascl
pipeline_tag: depth-estimation
library_name: pytorch
base_model:
- apple/DepthPro
tags:
- safetensors
---
<img src="https://takara.ai/images/logo-24/TakaraAi.svg" width="200" alt="Takara.ai Logo" />
From the Frontier Research Team at **Takara.ai** we present **DepthPro-Safetensors**, a memory-efficient and optimized implementation of Apple's high-precision depth estimation model.
---
# DepthPro-Safetensors
This repository contains Apple's [DepthPro](https://huggingface.co/apple/DepthPro) depth estimation model converted to the SafeTensors format for improved memory efficiency, security, and faster loading times.
## Model Overview
DepthPro is a state-of-the-art monocular depth estimation model developed by Apple that produces sharp and accurate metric depth maps from a single image in less than a second. This converted version preserves all the capabilities of the original model while providing the benefits of the SafeTensors format.
## Technical Specifications
- **Total Parameters**: 951,991,330
- **Memory Usage**: 1815.78 MB
- **Precision**: torch.float16
- **Estimated FLOPs**: 3,501,896,768
_Details calculated with [TensorKIKO](https://github.com/takara-ai/TensorKiko)_
## Usage
```python
from transformers import AutoModelForDepthEstimation, AutoImageProcessor
import torch
from PIL import Image
# Load model and processor
model = AutoModelForDepthEstimation.from_pretrained("takara-ai/DepthPro-Safetensors")
processor = AutoImageProcessor.from_pretrained("takara-ai/DepthPro-Safetensors")
# Prepare image
image = Image.open("your_image.jpg")
inputs = processor(images=image, return_tensors="pt")
# Inference
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# Post-process for visualization
depth_map = processor.post_process_depth_estimation(outputs, target_size=image.size[::-1])
```
## Benefits of SafeTensors Format
- **Improved Security**: Resistant to code execution vulnerabilities
- **Faster Loading Times**: Optimized memory mapping for quicker model initialization
- **Memory Efficiency**: Better handling of tensor storage for reduced memory footprint
- **Parallel Loading**: Support for efficient parallel tensor loading
## Citation
```bibtex
@article{Bochkovskii2024:arxiv,
author = {Aleksei Bochkovskii and Ama\"{e}l Delaunoy and Hugo Germain and Marcel Santos and
Yichao Zhou and Stephan R. Richter and Vladlen Koltun},
title = {Depth Pro: Sharp Monocular Metric Depth in Less Than a Second},
journal = {arXiv},
year = {2024},
}
```
---
For research inquiries and press, please reach out to [email protected]
> 人類を変革する |