takarajordan commited on
Commit
5fd1d4e
·
verified ·
1 Parent(s): ff215fd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -9
README.md CHANGED
@@ -7,27 +7,74 @@ base_model:
7
  tags:
8
  - safetensors
9
  ---
 
 
 
 
 
 
 
10
  # DepthPro-Safetensors
11
 
12
- [https://huggingface.co/apple/DepthPro](https://huggingface.co/apple/DepthPro) converted to SafeTensors.
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- ## Details
15
 
16
- - Total Parameters: 951,991,330
17
- - Memory Usage: 1815.78 MB
18
- - Precisions: torch.float16
19
- - Estimated FLOPs: 3,501,896,768
20
 
21
- Details calculated with [TensorKIKO](https://github.com/takara-ai/TensorKiko)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  ## Citation
24
 
25
  ```bibtex
26
  @article{Bochkovskii2024:arxiv,
27
  author = {Aleksei Bochkovskii and Ama\"{e}l Delaunoy and Hugo Germain and Marcel Santos and
28
- Yichao Zhou and Stephan R. Richter and Vladlen Koltun}
29
  title = {Depth Pro: Sharp Monocular Metric Depth in Less Than a Second},
30
  journal = {arXiv},
31
  year = {2024},
32
  }
33
- ```
 
 
 
 
 
 
7
  tags:
8
  - safetensors
9
  ---
10
+
11
+ <img src="https://takara.ai/images/logo-24/TakaraAi.svg" width="200" alt="Takara.ai Logo" />
12
+
13
+ From the Frontier Research Team at **Takara.ai** we present **DepthPro-Safetensors**, a memory-efficient and optimized implementation of Apple's high-precision depth estimation model.
14
+
15
+ ---
16
+
17
  # DepthPro-Safetensors
18
 
19
+ This repository contains Apple's [DepthPro](https://huggingface.co/apple/DepthPro) depth estimation model converted to the SafeTensors format for improved memory efficiency, security, and faster loading times.
20
+
21
+ ## Model Overview
22
+
23
+ DepthPro is a state-of-the-art monocular depth estimation model developed by Apple that produces sharp and accurate metric depth maps from a single image in less than a second. This converted version preserves all the capabilities of the original model while providing the benefits of the SafeTensors format.
24
+
25
+ ## Technical Specifications
26
+
27
+ - **Total Parameters**: 951,991,330
28
+ - **Memory Usage**: 1815.78 MB
29
+ - **Precision**: torch.float16
30
+ - **Estimated FLOPs**: 3,501,896,768
31
 
32
+ _Details calculated with [TensorKIKO](https://github.com/takara-ai/TensorKiko)_
33
 
34
+ ## Usage
 
 
 
35
 
36
+ ```python
37
+ from transformers import AutoModelForDepthEstimation, AutoImageProcessor
38
+ import torch
39
+ from PIL import Image
40
+
41
+ # Load model and processor
42
+ model = AutoModelForDepthEstimation.from_pretrained("takara-ai/DepthPro-Safetensors")
43
+ processor = AutoImageProcessor.from_pretrained("takara-ai/DepthPro-Safetensors")
44
+
45
+ # Prepare image
46
+ image = Image.open("your_image.jpg")
47
+ inputs = processor(images=image, return_tensors="pt")
48
+
49
+ # Inference
50
+ with torch.no_grad():
51
+ outputs = model(**inputs)
52
+ predicted_depth = outputs.predicted_depth
53
+
54
+ # Post-process for visualization
55
+ depth_map = processor.post_process_depth_estimation(outputs, target_size=image.size[::-1])
56
+ ```
57
+
58
+ ## Benefits of SafeTensors Format
59
+
60
+ - **Improved Security**: Resistant to code execution vulnerabilities
61
+ - **Faster Loading Times**: Optimized memory mapping for quicker model initialization
62
+ - **Memory Efficiency**: Better handling of tensor storage for reduced memory footprint
63
+ - **Parallel Loading**: Support for efficient parallel tensor loading
64
 
65
  ## Citation
66
 
67
  ```bibtex
68
  @article{Bochkovskii2024:arxiv,
69
  author = {Aleksei Bochkovskii and Ama\"{e}l Delaunoy and Hugo Germain and Marcel Santos and
70
+ Yichao Zhou and Stephan R. Richter and Vladlen Koltun},
71
  title = {Depth Pro: Sharp Monocular Metric Depth in Less Than a Second},
72
  journal = {arXiv},
73
  year = {2024},
74
  }
75
+ ```
76
+
77
+ ---
78
+ For research inquiries and press, please reach out to [email protected]
79
+
80
+ > 人類を変革する