zephyr-7b-dpo-qlora / README.md
taicheng's picture
Model save
d1f6790 verified
|
raw
history blame
3.71 kB
metadata
base_model: mistralai/Mistral-7B-v0.1
library_name: peft
license: apache-2.0
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-qlora
    results: []

zephyr-7b-dpo-qlora

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4952
  • Rewards/chosen: -2.8107
  • Rewards/rejected: -3.8708
  • Rewards/accuracies: 0.7718
  • Rewards/margins: 1.0601
  • Logps/rejected: -631.7385
  • Logps/chosen: -545.9743
  • Logits/rejected: -1.0385
  • Logits/chosen: -1.1509

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Logits/chosen Logits/rejected Logps/chosen Logps/rejected Validation Loss Rewards/accuracies Rewards/chosen Rewards/margins Rewards/rejected
0.6163 0.1047 100 -2.1006 -2.0162 -303.8351 -310.3097 0.6178 0.6806 -0.3893 0.2672 -0.6565
0.5679 0.2094 200 -1.8227 -1.7394 -352.2879 -389.6575 0.5567 0.7401 -0.8739 0.5761 -1.4500
0.5412 0.3141 300 -1.3111 -1.2181 -421.3257 -483.0423 0.5305 0.7460 -1.5642 0.8196 -2.3838
0.5364 0.4187 400 -1.2334 -1.1332 -416.6979 -476.3458 0.5143 0.7579 -1.5180 0.7989 -2.3169
0.5046 0.5234 500 -1.1373 -1.0302 -529.9542 -605.2977 0.5062 0.7579 -2.6505 0.9559 -3.6064
0.4736 0.6281 600 0.5059 -2.7244 -3.7650 0.7639 1.0406 -621.1549 -537.3406 -1.0135 -1.1253
0.4619 0.7328 700 0.4994 -2.9240 -3.9991 0.7619 1.0750 -644.5651 -557.3041 -1.0064 -1.1194
0.4926 0.8375 800 0.4962 -2.7247 -3.7455 0.7659 1.0207 -619.2051 -537.3770 -1.0516 -1.1641
0.4856 0.9422 900 0.4952 -2.8107 -3.8708 0.7718 1.0601 -631.7385 -545.9743 -1.0385 -1.1509

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1