ent_description

This model is a fine-tuned version of textattack/bert-base-uncased-CoLA on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6580
  • Class Acc: 0.9292
  • Class Rec: 0.8413
  • Class Prec: 0.8281
  • Class F1: 0.8346
  • Class Mcc: 0.7896
  • Feature Ham Loss: 0.2192
  • Feature Rec: 0.8123
  • Feature Prec: 0.8417
  • Feature F1: 0.8242

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Class Acc Class Rec Class Prec Class F1 Class Mcc Feature Ham Loss Feature Rec Feature Prec Feature F1
No log 1.0 44 0.7838 0.8617 0.3571 0.9783 0.5233 0.5429 0.2437 0.8232 0.8093 0.8085
No log 2.0 88 0.6784 0.9258 0.7222 0.91 0.8053 0.7680 0.2626 0.7303 0.8361 0.7713
No log 3.0 132 0.7053 0.8870 0.9206 0.6705 0.7759 0.7186 0.2175 0.9294 0.7970 0.8501
No log 4.0 176 0.7280 0.8853 0.9286 0.6648 0.7748 0.7183 0.2226 0.9313 0.7921 0.8499
No log 5.0 220 0.6285 0.9376 0.7540 0.9406 0.8370 0.8065 0.2310 0.7869 0.8440 0.8071
No log 6.0 264 0.6029 0.9342 0.8095 0.8718 0.8395 0.7991 0.2293 0.8327 0.8206 0.8230
No log 7.0 308 0.6106 0.9410 0.8333 0.8824 0.8571 0.8205 0.2146 0.8810 0.8181 0.8371
No log 8.0 352 0.6012 0.9410 0.8333 0.8824 0.8571 0.8205 0.2104 0.8734 0.8242 0.8390
No log 9.0 396 0.5981 0.9376 0.8413 0.8618 0.8514 0.8120 0.2087 0.8632 0.8290 0.8387
No log 10.0 440 0.6213 0.9393 0.8175 0.8879 0.8512 0.8143 0.2323 0.7704 0.8491 0.8029
No log 11.0 484 0.6667 0.9258 0.8968 0.7847 0.8370 0.7922 0.2243 0.7856 0.8519 0.8156
0.6254 12.0 528 0.6419 0.9325 0.8730 0.8209 0.8462 0.8036 0.2201 0.8492 0.8222 0.8327
0.6254 13.0 572 0.6979 0.9258 0.9048 0.7808 0.8382 0.7940 0.2184 0.8772 0.8137 0.8426
0.6254 14.0 616 0.6541 0.9292 0.8492 0.8231 0.8359 0.7909 0.2209 0.7926 0.8504 0.8174
0.6254 15.0 660 0.6407 0.9342 0.8333 0.8537 0.8434 0.8019 0.2146 0.8340 0.8351 0.8298
0.6254 16.0 704 0.6448 0.9342 0.8016 0.8783 0.8382 0.7983 0.2171 0.8149 0.8424 0.8225
0.6254 17.0 748 0.6556 0.9309 0.7619 0.8972 0.8240 0.7854 0.2196 0.8181 0.8375 0.8218
0.6254 18.0 792 0.6642 0.9275 0.8571 0.8120 0.8340 0.7881 0.2163 0.8244 0.8389 0.8292
0.6254 19.0 836 0.6546 0.9376 0.8254 0.8739 0.8490 0.8102 0.2226 0.8066 0.8405 0.8203
0.6254 20.0 880 0.6580 0.9292 0.8413 0.8281 0.8346 0.7896 0.2192 0.8123 0.8417 0.8242

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for tab7v/ent_description

Finetuned
(1)
this model