syv.ai TTS v0.1
TTS v0.1 er vores første open source tekst-til-tale model. Den er trænet på over 1000 timers dansk lyd.
Model
Modellen er originalt en LLAMA 3.2 3B model, som er blevet trænet på 100.000 timers engelsk, og vi har efterfølgende trænet den til at tale dansk.
I det, at modellen er en LLM, så betyder det også, at der kan køres inferens på den ved hjælp af vLLM, ollama eller andre populære inferns-frameworks.
Vi anbefaler, at I kigger efter hvordan inferens er implementeret i Orpheus.
Vi søger mere tale
Ligger du inde med lyd (gerne ikke oplæst), så hører vi gerne fra dig. Vi søger specifikt normal samtale lyd.
Licens
Følger MIT for privatpersoner og organisationer der vil bruge modellen til forskning. Ved kommercielt brug skal der betales 1 kr. for en livstidslicens. Læs LICENSE.txt for den fulde licens.
Træningskonfiguration
axolotl version: 0.8.0
base_model: syvai/tts-v1-pretrained
# Automatically upload checkpoint and final model to HF
hub_model_id: syvai/tts-v1-finetuned
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
datasets:
- path: syvai/zac-coral-tts
type:
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
eval_sample_packing: False
output_dir: ./outputs/finetuned
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: orph
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 2e-5
bf16: auto
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 3
evals_per_epoch: 5
saves_per_epoch: 5
weight_decay: 0.05
special_tokens:
pad_token: <custom_token_7>
tts-v1-finetuned
This model is a fine-tuned version of syvai/tts-v1-pretrained on the syvai/zac-coral-tts dataset. It achieves the following results on the evaluation set:
- Loss: 4.2860
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 3
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.9492 | 0.0246 | 1 | 4.8478 |
4.7181 | 0.1969 | 8 | 4.5872 |
4.5871 | 0.3938 | 16 | 4.4631 |
4.557 | 0.5908 | 24 | 4.3972 |
4.4965 | 0.7877 | 32 | 4.3521 |
4.4697 | 0.9846 | 40 | 4.3258 |
4.4525 | 1.1723 | 48 | 4.3083 |
4.4301 | 1.3692 | 56 | 4.2980 |
4.4459 | 1.5662 | 64 | 4.2915 |
4.4382 | 1.7631 | 72 | 4.2893 |
4.4315 | 1.96 | 80 | 4.2866 |
4.4178 | 2.1477 | 88 | 4.2861 |
4.4501 | 2.3446 | 96 | 4.2859 |
4.4121 | 2.5415 | 104 | 4.2856 |
4.4164 | 2.7385 | 112 | 4.2859 |
4.4264 | 2.9354 | 120 | 4.2860 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 62