A cross-attention NLI model trained for zero-shot and few-shot text classification.

The base model is mpnet-base, trained with the code from here; on SNLI and MNLI.

Usage:

from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
import numpy as np

model = AutoModelForSequenceClassification.from_pretrained("symanto/mpnet-base-snli-mnli")
tokenizer = AutoTokenizer.from_pretrained("symanto/mpnet-base-snli-mnli")

input_pairs = [("I like this pizza.", "The sentence is positive."), ("I like this pizza.", "The sentence is negative.")]
inputs = tokenizer(["</s></s>".join(input_pair) for input_pair in input_pairs], return_tensors="pt")
logits = model(**inputs).logits
probs =  torch.softmax(logits, dim=1).tolist()
print("probs", probs)
np.testing.assert_almost_equal(probs, [[0.86, 0.14, 0.00], [0.16, 0.15, 0.69]], decimal=2)
Downloads last month
35
Safetensors
Model size
109M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.