TypeScript SLM 7B
Standard 7B TypeScript model for TypeScript code generation, optimized for React, Next.js, Angular, and Node.js.
Model Details
- Base Model: Qwen/Qwen2.5-Coder-7B-Instruct
- Model Size: 7B parameters
- Training Method: LoRA (Low-Rank Adaptation)
- Context Length: 2048 tokens
- LoRA Rank: 64
- Training Dataset: 5,000 high-quality TypeScript samples
Training Configuration
- Batch Size: 2
- Gradient Accumulation: 16
- Effective Batch Size: 32
- Learning Rate: 0.0001
- Epochs: 3
- Hardware: Google Colab A100 40GB
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
base_model = "Qwen/Qwen2.5-Coder-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
base_model,
device_map="auto",
torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(base_model)
# Load LoRA adapter
model = PeftModel.from_pretrained(model, "sylvester-francis/typescript-slm-7b")
# Generate code
prompt = "Write a React component with TypeScript:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0]))
Repository
- Downloads last month
- 11