layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6947
  • Answer: {'precision': 0.7250554323725056, 'recall': 0.8084054388133498, 'f1': 0.7644652250146114, 'number': 809}
  • Header: {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119}
  • Question: {'precision': 0.767586821015138, 'recall': 0.8093896713615023, 'f1': 0.7879341864716636, 'number': 1065}
  • Overall Precision: 0.7225
  • Overall Recall: 0.7797
  • Overall F1: 0.75
  • Overall Accuracy: 0.8070

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.742 1.0 10 1.5266 {'precision': 0.027950310559006212, 'recall': 0.03337453646477132, 'f1': 0.030422535211267605, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2287292817679558, 'recall': 0.19436619718309858, 'f1': 0.21015228426395938, 'number': 1065} 0.1251 0.1174 0.1211 0.4247
1.412 2.0 20 1.2278 {'precision': 0.19525801952580196, 'recall': 0.173053152039555, 'f1': 0.1834862385321101, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4582560296846011, 'recall': 0.463849765258216, 'f1': 0.4610359309379375, 'number': 1065} 0.3532 0.3181 0.3347 0.5888
1.0962 3.0 30 0.9645 {'precision': 0.4753157290470723, 'recall': 0.511742892459827, 'f1': 0.4928571428571428, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.6110183639398998, 'recall': 0.6873239436619718, 'f1': 0.6469288555015466, 'number': 1065} 0.5478 0.5750 0.5611 0.7154
0.838 4.0 40 0.7924 {'precision': 0.6248671625929861, 'recall': 0.7268232385661311, 'f1': 0.672, 'number': 809} {'precision': 0.12698412698412698, 'recall': 0.06722689075630252, 'f1': 0.08791208791208792, 'number': 119} {'precision': 0.6594863297431649, 'recall': 0.7474178403755869, 'f1': 0.7007042253521126, 'number': 1065} 0.6296 0.6984 0.6622 0.7647
0.6636 5.0 50 0.7294 {'precision': 0.6722037652270211, 'recall': 0.7503090234857849, 'f1': 0.7091121495327103, 'number': 809} {'precision': 0.2077922077922078, 'recall': 0.13445378151260504, 'f1': 0.16326530612244897, 'number': 119} {'precision': 0.6664086687306502, 'recall': 0.8084507042253521, 'f1': 0.7305897327110734, 'number': 1065} 0.6532 0.7446 0.6959 0.7781
0.5632 6.0 60 0.6983 {'precision': 0.660164271047228, 'recall': 0.7948084054388134, 'f1': 0.7212563095905777, 'number': 809} {'precision': 0.21739130434782608, 'recall': 0.12605042016806722, 'f1': 0.1595744680851064, 'number': 119} {'precision': 0.7283842794759825, 'recall': 0.7830985915492957, 'f1': 0.7547511312217194, 'number': 1065} 0.6819 0.7486 0.7137 0.7905
0.4868 7.0 70 0.6635 {'precision': 0.7008830022075055, 'recall': 0.7849196538936959, 'f1': 0.7405247813411079, 'number': 809} {'precision': 0.25742574257425743, 'recall': 0.2184873949579832, 'f1': 0.23636363636363636, 'number': 119} {'precision': 0.7467248908296943, 'recall': 0.8028169014084507, 'f1': 0.7737556561085973, 'number': 1065} 0.7045 0.7607 0.7315 0.7993
0.4332 8.0 80 0.6626 {'precision': 0.6882168925964547, 'recall': 0.8158220024721878, 'f1': 0.7466063348416289, 'number': 809} {'precision': 0.2727272727272727, 'recall': 0.226890756302521, 'f1': 0.24770642201834864, 'number': 119} {'precision': 0.7463456577815993, 'recall': 0.8150234741784037, 'f1': 0.7791741472172352, 'number': 1065} 0.7001 0.7802 0.7380 0.7992
0.3853 9.0 90 0.6623 {'precision': 0.7160220994475138, 'recall': 0.8009888751545118, 'f1': 0.7561260210035006, 'number': 809} {'precision': 0.30927835051546393, 'recall': 0.25210084033613445, 'f1': 0.2777777777777778, 'number': 119} {'precision': 0.753448275862069, 'recall': 0.8206572769953052, 'f1': 0.7856179775280899, 'number': 1065} 0.7179 0.7787 0.7471 0.8031
0.3733 10.0 100 0.6695 {'precision': 0.7180327868852459, 'recall': 0.8121137206427689, 'f1': 0.7621809744779582, 'number': 809} {'precision': 0.28846153846153844, 'recall': 0.25210084033613445, 'f1': 0.26905829596412556, 'number': 119} {'precision': 0.77068345323741, 'recall': 0.8046948356807512, 'f1': 0.7873220027560864, 'number': 1065} 0.7245 0.7747 0.7488 0.8085
0.3201 11.0 110 0.6826 {'precision': 0.7122381477398015, 'recall': 0.7985166872682324, 'f1': 0.752913752913753, 'number': 809} {'precision': 0.32142857142857145, 'recall': 0.3025210084033613, 'f1': 0.3116883116883117, 'number': 119} {'precision': 0.7510620220900595, 'recall': 0.8300469483568075, 'f1': 0.7885816235504014, 'number': 1065} 0.7131 0.7858 0.7477 0.8048
0.3027 12.0 120 0.6841 {'precision': 0.7213656387665198, 'recall': 0.8096415327564895, 'f1': 0.762958648806057, 'number': 809} {'precision': 0.34210526315789475, 'recall': 0.3277310924369748, 'f1': 0.33476394849785407, 'number': 119} {'precision': 0.7768744354110207, 'recall': 0.8075117370892019, 'f1': 0.7918968692449355, 'number': 1065} 0.7299 0.7797 0.7540 0.8068
0.2902 13.0 130 0.6871 {'precision': 0.7210065645514223, 'recall': 0.8145859085290482, 'f1': 0.7649448636099826, 'number': 809} {'precision': 0.32142857142857145, 'recall': 0.3025210084033613, 'f1': 0.3116883116883117, 'number': 119} {'precision': 0.7732506643046945, 'recall': 0.819718309859155, 'f1': 0.7958067456700091, 'number': 1065} 0.7276 0.7868 0.7560 0.8073
0.2694 14.0 140 0.6911 {'precision': 0.7197802197802198, 'recall': 0.8096415327564895, 'f1': 0.7620709714950552, 'number': 809} {'precision': 0.32456140350877194, 'recall': 0.31092436974789917, 'f1': 0.31759656652360513, 'number': 119} {'precision': 0.7796762589928058, 'recall': 0.8140845070422535, 'f1': 0.7965089572806615, 'number': 1065} 0.7299 0.7822 0.7551 0.8083
0.2721 15.0 150 0.6947 {'precision': 0.7250554323725056, 'recall': 0.8084054388133498, 'f1': 0.7644652250146114, 'number': 809} {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119} {'precision': 0.767586821015138, 'recall': 0.8093896713615023, 'f1': 0.7879341864716636, 'number': 1065} 0.7225 0.7797 0.75 0.8070

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Tokenizers 0.21.0
Downloads last month
11
Safetensors
Model size
113M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for svsvenu/layoutlm-funsd

Finetuned
(169)
this model