| # PromptDiffusion Pipeline | |
| From the project [page](https://zhendong-wang.github.io/prompt-diffusion.github.io/) | |
| "With a prompt consisting of a task-specific example pair of images and text guidance, and a new query image, Prompt Diffusion can comprehend the desired task and generate the corresponding output image on both seen (trained) and unseen (new) task types." | |
| For any usage questions, please refer to the [paper](https://arxiv.org/abs/2305.01115). | |
| Prepare models by converting them from the [checkpoint](https://huggingface.co/zhendongw/prompt-diffusion) | |
| To convert the controlnet, use cldm_v15.yaml from the [repository](https://github.com/Zhendong-Wang/Prompt-Diffusion/tree/main/models/): | |
| ```bash | |
| python convert_original_promptdiffusion_to_diffusers.py --checkpoint_path path-to-network-step04999.ckpt --original_config_file path-to-cldm_v15.yaml --dump_path path-to-output-directory | |
| ``` | |
| To learn about how to convert the fine-tuned stable diffusion model, see the [Load different Stable Diffusion formats guide](https://huggingface.co/docs/diffusers/main/en/using-diffusers/other-formats). | |
| ```py | |
| import torch | |
| from diffusers import UniPCMultistepScheduler | |
| from diffusers.utils import load_image | |
| from promptdiffusioncontrolnet import PromptDiffusionControlNetModel | |
| from pipeline_prompt_diffusion import PromptDiffusionPipeline | |
| from PIL import ImageOps | |
| image_a = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house_line.png?raw=true")) | |
| image_b = load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house.png?raw=true") | |
| query = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/new_01.png?raw=true")) | |
| # load prompt diffusion controlnet and prompt diffusion | |
| controlnet = PromptDiffusionControlNetModel.from_pretrained("iczaw/prompt-diffusion-diffusers", subfolder="controlnet", torch_dtype=torch.float16) | |
| model_id = "path-to-model" | |
| pipe = PromptDiffusionPipeline.from_pretrained("iczaw/prompt-diffusion-diffusers", subfolder="base", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16") | |
| # speed up diffusion process with faster scheduler and memory optimization | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| # remove following line if xformers is not installed | |
| pipe.enable_xformers_memory_efficient_attention() | |
| pipe.enable_model_cpu_offload() | |
| # generate image | |
| generator = torch.manual_seed(0) | |
| image = pipe("a tortoise", num_inference_steps=20, generator=generator, image_pair=[image_a,image_b], image=query).images[0] | |
| ``` | |
