YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Xiang_Handsome Text-to-Video Generation

This repository contains the necessary steps and scripts to generate videos using the Xiang_Handsome text-to-video model. The model leverages LoRA (Low-Rank Adaptation) weights and pre-trained components to create high-quality anime-style videos based on textual prompts.

Prerequisites

Before proceeding, ensure that you have the following installed on your system:

Ubuntu (or a compatible Linux distribution) • Python 3.xpip (Python package manager) • GitGit LFS (Git Large File Storage) • FFmpeg

Installation

  1. Update and Install Dependencies

    sudo apt-get update && sudo apt-get install cbm git-lfs ffmpeg
    
  2. Clone the Repository

    git clone https://huggingface.co/svjack/Xiang_Handsome_wan_2_1_14_B_text2video_lora  
    cd Xiang_Handsome_wan_2_1_14_B_text2video_lora  
    
  3. Install Python Dependencies

    pip install torch torchvision
    pip install -r requirements.txt
    pip install ascii-magic matplotlib tensorboard huggingface_hub datasets
    pip install moviepy==1.0.3
    pip install sageattention==1.0.6
    
  4. Download Model Weights

    wget https://huggingface.co/Wan-AI/Wan2.1-T2V-14B/resolve/main/models_t5_umt5-xxl-enc-bf16.pth
    wget https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth
    wget https://huggingface.co/Wan-AI/Wan2.1-T2V-14B/resolve/main/Wan2.1_VAE.pth
    wget https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors
    wget https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/diffusion_models/wan2.1_t2v_14B_bf16.safetensors
    

Usage

To generate a video, use the wan_generate_video.py script with the appropriate parameters. Below are examples of how to generate videos using the Xiang_Handsome model.

Ice Cream (Wan 2.1)

  • use wan fusionX 14b
In the style of anime landscape ,一个戴眼镜的年轻的男子赤裸全身站在镜头前,正在吃冰淇凌。

Ice Cream (Wan 2.2)

​​夏日清凉:​​ ​​一个戴着眼镜的清爽青年,身穿简约白色T恤和卡其色短裤,站在阳光斑驳的树荫下,笑容灿烂地品尝着一支缀满巧克力碎的香草冰淇淋。​​ 暖色调,生活感镜头。

人物:
[年龄] 青年(约18-25岁)[性别] 男性 [服饰特征] 白色T恤和卡其色短裤 [种族/地域特征] 东亚男孩(约一米八身高)

外貌特征:
• 体型描述:身高约一米八,清爽体型
• 服饰细节:简约白色T恤和卡其色短裤
• 配饰:眼镜
• 其他:具体发型未提及,可假设为普通短发或中长发

状态:
• 环境:阳光斑驳的树荫下
• 动作:站立并品尝冰淇淋

表情:
• 情绪:愉悦、快乐
• 细节:笑容灿烂

镜头设计:

景别:中景或全身镜头
角度:正面或侧面拍摄
焦点:人物和冰淇淋
运镜:静态镜头或轻微移动
隐喻:暖色调,生活感镜头
肢体语言:
• 手部:一只手拿着冰淇淋,另一只手自然下垂或放在口袋里
• 躯干:站立姿态,可能稍微前倾以便品尝冰淇淋
• 整体氛围:轻松愉快的夏日氛围

补充说明:
• 可加入环境音(例如:鸟鸣声、风声等)
• 特殊效果建议(例如:突出冰淇淋的细节特写)

With PUSA lora

Parameters

  • --fp8: Enable FP8 precision (optional).
  • --task: Specify the task (e.g., t2v-1.3B).
  • --video_size: Set the resolution of the generated video (e.g., 1024 1024).
  • --video_length: Define the length of the video in frames.
  • --infer_steps: Number of inference steps.
  • --save_path: Directory to save the generated video.
  • --output_type: Output type (e.g., both for video and frames).
  • --dit: Path to the diffusion model weights.
  • --vae: Path to the VAE model weights.
  • --t5: Path to the T5 model weights.
  • --attn_mode: Attention mode (e.g., torch).
  • --lora_weight: Path to the LoRA weights.
  • --lora_multiplier: Multiplier for LoRA weights.
  • --prompt: Textual prompt for video generation.

Output

The generated video and frames will be saved in the specified save_path directory.

Troubleshooting

• Ensure all dependencies are correctly installed. • Verify that the model weights are downloaded and placed in the correct locations. • Check for any missing Python packages and install them using pip.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Acknowledgments

Hugging Face for hosting the model weights. • Wan-AI for providing the pre-trained models. • DeepBeepMeep for contributing to the model weights.

Contact

For any questions or issues, please open an issue on the repository or contact the maintainer.


Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support