finetune_colpali_v1_2-german-4bit

This model is a fine-tuned version of vidore/colpaligemma-3b-pt-448-base on the German_docx dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1100
  • Model Preparation Time: 0.008

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time
No log 0.0533 1 0.3717 0.008
1.1358 0.5333 10 0.3356 0.008
1.2182 1.0667 20 0.2811 0.008
0.844 1.6 30 0.2365 0.008
0.7722 2.1333 40 0.1990 0.008
0.4823 2.6667 50 0.1758 0.008
0.46 3.2 60 0.1451 0.008
0.1477 3.7333 70 0.1252 0.008
0.1764 4.2667 80 0.1258 0.008
0.2329 4.8 90 0.1100 0.008

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.3.1
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for svenbl80/finetune_colpali_v1_2-german-4bit

Finetuned
(26)
this model