lnm-classifier
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.7829
- Accuracy: 0.3235
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.2846 | 1.0 | 17 | 3.2341 | 0.1176 |
3.1608 | 2.0 | 34 | 3.1803 | 0.0882 |
3.0471 | 3.0 | 51 | 3.1653 | 0.1471 |
2.9494 | 4.0 | 68 | 3.1728 | 0.0882 |
2.848 | 5.0 | 85 | 3.0685 | 0.1176 |
2.7737 | 6.0 | 102 | 3.1228 | 0.1765 |
2.6777 | 7.0 | 119 | 3.0640 | 0.2059 |
2.6111 | 8.0 | 136 | 3.0528 | 0.2059 |
2.5464 | 9.0 | 153 | 3.0111 | 0.2353 |
2.5201 | 10.0 | 170 | 2.9701 | 0.2059 |
2.4315 | 11.0 | 187 | 2.9234 | 0.2059 |
2.3571 | 12.0 | 204 | 2.8955 | 0.2941 |
2.3202 | 13.0 | 221 | 2.8774 | 0.2353 |
2.2824 | 14.0 | 238 | 2.8464 | 0.2647 |
2.2163 | 15.0 | 255 | 2.8285 | 0.2941 |
2.1859 | 16.0 | 272 | 2.8062 | 0.2941 |
2.1898 | 17.0 | 289 | 2.8084 | 0.3235 |
2.1454 | 18.0 | 306 | 2.7896 | 0.3235 |
2.1143 | 19.0 | 323 | 2.7821 | 0.3235 |
2.1219 | 20.0 | 340 | 2.7829 | 0.3235 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for suyashmittal/lnm-classifier
Base model
google-bert/bert-base-uncased