lnm-classifier

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7829
  • Accuracy: 0.3235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.2846 1.0 17 3.2341 0.1176
3.1608 2.0 34 3.1803 0.0882
3.0471 3.0 51 3.1653 0.1471
2.9494 4.0 68 3.1728 0.0882
2.848 5.0 85 3.0685 0.1176
2.7737 6.0 102 3.1228 0.1765
2.6777 7.0 119 3.0640 0.2059
2.6111 8.0 136 3.0528 0.2059
2.5464 9.0 153 3.0111 0.2353
2.5201 10.0 170 2.9701 0.2059
2.4315 11.0 187 2.9234 0.2059
2.3571 12.0 204 2.8955 0.2941
2.3202 13.0 221 2.8774 0.2353
2.2824 14.0 238 2.8464 0.2647
2.2163 15.0 255 2.8285 0.2941
2.1859 16.0 272 2.8062 0.2941
2.1898 17.0 289 2.8084 0.3235
2.1454 18.0 306 2.7896 0.3235
2.1143 19.0 323 2.7821 0.3235
2.1219 20.0 340 2.7829 0.3235

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
0
Safetensors
Model size
110M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for suyashmittal/lnm-classifier

Finetuned
(4566)
this model