Edit model card

roberta-large-finetuned-abbr-unfiltered-plod

This model is a fine-tuned version of roberta-large on the PLODv2 unfiltered dataset. It is released with our LREC-COLING 2024 publication Using character-level models for efficient abbreviation and long-form detection. It achieves the following results on the test set:

Results on abbreviations:

  • Precision: 0.8916
  • Recall: 0.9152
  • F1: 0.9033

Results on long forms:

  • Precision: 0.8607
  • Recall: 0.9142
  • F1: 0.8867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.167 0.25 7000 0.1616 0.9484 0.9366 0.9424 0.9376
0.1673 0.49 14000 0.1459 0.9504 0.9370 0.9437 0.9389
0.1472 0.74 21000 0.1560 0.9531 0.9373 0.9451 0.9398
0.1519 0.98 28000 0.1434 0.9551 0.9382 0.9466 0.9415
0.1388 1.23 35000 0.1472 0.9516 0.9374 0.9444 0.9400
0.1291 1.48 42000 0.1416 0.9557 0.9403 0.9479 0.9431
0.1298 1.72 49000 0.1394 0.9577 0.9459 0.9517 0.9470
0.1269 1.97 56000 0.1401 0.9587 0.9446 0.9516 0.9468
0.1128 2.21 63000 0.1410 0.9568 0.9497 0.9533 0.9486
0.1154 2.46 70000 0.1366 0.9583 0.9495 0.9539 0.9493
0.1138 2.71 77000 0.1413 0.9600 0.9502 0.9551 0.9506
0.1117 2.95 84000 0.1313 0.9605 0.9501 0.9552 0.9508
0.0997 3.2 91000 0.1503 0.9577 0.9527 0.9552 0.9507
0.1008 3.44 98000 0.1360 0.9587 0.9536 0.9561 0.9515
0.0909 3.69 105000 0.1435 0.9619 0.9520 0.9569 0.9525
0.0903 3.93 112000 0.1482 0.9619 0.9522 0.9570 0.9528
0.075 4.18 119000 0.1603 0.9616 0.9546 0.9581 0.9537
0.0804 4.43 126000 0.1512 0.9600 0.9560 0.9580 0.9536
0.0811 4.67 133000 0.1435 0.9628 0.9543 0.9585 0.9540
0.0778 4.92 140000 0.1384 0.9616 0.9566 0.9591 0.9548
0.065 5.16 147000 0.1640 0.9622 0.9567 0.9595 0.9550
0.0607 5.41 154000 0.1755 0.9632 0.9562 0.9597 0.9554
0.0587 5.66 161000 0.1643 0.9622 0.9575 0.9599 0.9555
0.062 5.9 168000 0.1663 0.9628 0.9569 0.9598 0.9556

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.10.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.