🌞 Solara — summerstars/Solara
🧮 少しだけ数学も学習した軽量LLM!
A Compact Language Model with a Touch of Math Knowledge
Created by a High School Student | Built on Google Colab (T4 GPU)
高校生によって開発 | Google Colab(T4 GPU)で作成
Solara is a lightweight, instruction-tuned language model based on HuggingFaceTB/SmolLM2-360M-Instruct
.
Trained slightly on mathematical datasets, it can assist with basic math-related queries as well as general instructions.
It was built using Google Colab (T4 GPU) by a high school student.
Solara(ソララ) は、HuggingFaceTB/SmolLM2-360M-Instruct
をベースにした軽量指示応答型モデルです。
簡単な数学に関する学習も行っており、日常的な質問から基本的な数学の問題まで対応可能です。
高校生が Google Colab(T4 GPU)上で開発しました。
📌 Model Details / モデル詳細
- Base Model / ベースモデル: HuggingFaceTB/SmolLM2-360M-Instruct
- Parameters / パラメータ数: 360M
- Architecture / アーキテクチャ: Decoder-only Transformer / デコーダ専用トランスフォーマー
- Languages / 対応言語: English / 英語
- License / ライセンス: Apache 2.0
- Specialty / 特徴: Trained with basic math samples / 基本的な数学のデータで微学習済み
🚀 Use Cases / 主な用途
- Lightweight chatbots / 軽量チャットボット
- Inference on CPUs or mobile devices / CPU・モバイル端末での推論
- Educational or hobbyist projects / 教育・趣味用途
- Instruction-following tasks / 指示応答タスク
- Simple math-related queries / 簡単な数学関連の質問
🛠️ How to Use / 使用方法
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "summerstars/Solara"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
prompt = "What is the square root of 144?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The HF Inference API does not support text-generation models for transformers.js
library.
Model tree for summerstars/Solara-deepMATH
Base model
HuggingFaceTB/SmolLM2-360M-Instruct