|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
import torch |
|
|
from datasets import load_dataset |
|
|
from peft import LoraConfig, TaskType |
|
|
from trl import SFTTrainer, SFTConfig |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
|
import trackio |
|
|
|
|
|
print("="*50) |
|
|
print("Starting Alizee Coder Devstral Training") |
|
|
print("="*50) |
|
|
|
|
|
|
|
|
MODEL_NAME = "mistralai/Devstral-Small-2505" |
|
|
OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small" |
|
|
DATASET_SIZE = 10000 |
|
|
|
|
|
|
|
|
if not os.environ.get("HF_TOKEN"): |
|
|
raise ValueError("HF_TOKEN not set!") |
|
|
print("HF_TOKEN verified") |
|
|
|
|
|
print(f"Loading dataset nvidia/OpenCodeReasoning...") |
|
|
try: |
|
|
dataset = load_dataset("nvidia/OpenCodeReasoning", "split_0", split="split_0") |
|
|
dataset = dataset.shuffle(seed=42).select(range(min(DATASET_SIZE, len(dataset)))) |
|
|
print(f"Dataset loaded: {len(dataset)} examples") |
|
|
except Exception as e: |
|
|
print(f"Error loading dataset: {e}") |
|
|
raise |
|
|
|
|
|
|
|
|
dataset_split = dataset.train_test_split(test_size=0.05, seed=42) |
|
|
train_dataset = dataset_split["train"] |
|
|
eval_dataset = dataset_split["test"] |
|
|
print(f"Train: {len(train_dataset)}, Eval: {len(eval_dataset)}") |
|
|
|
|
|
|
|
|
def format_example(example): |
|
|
solution = example.get('solution', '') or '' |
|
|
output = example.get('output', '') or '' |
|
|
text = f"<s>[INST] Solve this programming problem with detailed reasoning:\n\n{example['input']}\n[/INST]\n\n**Reasoning:**\n{output}\n\n**Solution:**\n```python\n{solution}\n```</s>" |
|
|
return {"text": text} |
|
|
|
|
|
print("Formatting dataset...") |
|
|
train_dataset = train_dataset.map(format_example, remove_columns=train_dataset.column_names) |
|
|
eval_dataset = eval_dataset.map(format_example, remove_columns=eval_dataset.column_names) |
|
|
print("Dataset formatted") |
|
|
|
|
|
|
|
|
print(f"Loading tokenizer...") |
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) |
|
|
if tokenizer.pad_token is None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
print("Tokenizer loaded") |
|
|
|
|
|
|
|
|
bnb_config = BitsAndBytesConfig( |
|
|
load_in_4bit=True, |
|
|
bnb_4bit_quant_type="nf4", |
|
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
|
bnb_4bit_use_double_quant=True, |
|
|
) |
|
|
|
|
|
print(f"Loading model {MODEL_NAME}...") |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
MODEL_NAME, |
|
|
quantization_config=bnb_config, |
|
|
device_map="auto", |
|
|
trust_remote_code=True, |
|
|
torch_dtype=torch.bfloat16, |
|
|
) |
|
|
print("Model loaded") |
|
|
|
|
|
|
|
|
lora_config = LoraConfig( |
|
|
r=32, |
|
|
lora_alpha=64, |
|
|
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], |
|
|
lora_dropout=0.05, |
|
|
bias="none", |
|
|
task_type=TaskType.CAUSAL_LM, |
|
|
) |
|
|
|
|
|
|
|
|
training_config = SFTConfig( |
|
|
output_dir="./alizee-coder-devstral-1-small", |
|
|
num_train_epochs=1, |
|
|
per_device_train_batch_size=1, |
|
|
per_device_eval_batch_size=1, |
|
|
gradient_accumulation_steps=16, |
|
|
gradient_checkpointing=True, |
|
|
learning_rate=2e-4, |
|
|
lr_scheduler_type="cosine", |
|
|
warmup_ratio=0.1, |
|
|
max_seq_length=4096, |
|
|
logging_steps=10, |
|
|
save_strategy="steps", |
|
|
save_steps=200, |
|
|
eval_strategy="steps", |
|
|
eval_steps=200, |
|
|
bf16=True, |
|
|
push_to_hub=True, |
|
|
hub_model_id=OUTPUT_REPO, |
|
|
hub_strategy="every_save", |
|
|
report_to="trackio", |
|
|
run_name="alizee-coder-devstral-1-small", |
|
|
) |
|
|
|
|
|
print("Initializing trainer...") |
|
|
trainer = SFTTrainer( |
|
|
model=model, |
|
|
args=training_config, |
|
|
train_dataset=train_dataset, |
|
|
eval_dataset=eval_dataset, |
|
|
peft_config=lora_config, |
|
|
tokenizer=tokenizer, |
|
|
dataset_text_field="text", |
|
|
) |
|
|
|
|
|
print("="*50) |
|
|
print("STARTING TRAINING") |
|
|
print("="*50) |
|
|
trainer.train() |
|
|
|
|
|
print("Pushing to Hub...") |
|
|
trainer.push_to_hub() |
|
|
print(f"Done! Model: https://huggingface.co/{OUTPUT_REPO}") |
|
|
|