File size: 3,968 Bytes
816727c
eaa39d7
816727c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348bed7
816727c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c74769
816727c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f71a58
9c8cf56
816727c
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# /// script
# dependencies = ["trl==0.11.4", "peft>=0.7.0", "trackio", "datasets", "transformers>=4.46.0", "accelerate", "bitsandbytes", "torch", "protobuf", "sentencepiece", "mistral-common>=1.5.0"]
# ///

import os
import torch
from datasets import load_dataset
from peft import LoraConfig, TaskType
from trl import SFTTrainer, SFTConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import trackio

print("="*50)
print("Starting Alizee Coder Devstral Training")
print("="*50)

# Configuration
MODEL_NAME = "mistralai/Devstral-Small-2505"
OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small"
DATASET_SIZE = 10000

# Verify HF_TOKEN
if not os.environ.get("HF_TOKEN"):
    raise ValueError("HF_TOKEN not set!")
print("HF_TOKEN verified")

print(f"Loading dataset nvidia/OpenCodeReasoning...")
try:
    dataset = load_dataset("nvidia/OpenCodeReasoning", "split_0", split="split_0")
    dataset = dataset.shuffle(seed=42).select(range(min(DATASET_SIZE, len(dataset))))
    print(f"Dataset loaded: {len(dataset)} examples")
except Exception as e:
    print(f"Error loading dataset: {e}")
    raise

# Split train/eval
dataset_split = dataset.train_test_split(test_size=0.05, seed=42)
train_dataset = dataset_split["train"]
eval_dataset = dataset_split["test"]
print(f"Train: {len(train_dataset)}, Eval: {len(eval_dataset)}")

# Format for code reasoning
def format_example(example):
    solution = example.get('solution', '') or ''
    output = example.get('output', '') or ''
    text = f"<s>[INST] Solve this programming problem with detailed reasoning:\n\n{example['input']}\n[/INST]\n\n**Reasoning:**\n{output}\n\n**Solution:**\n```python\n{solution}\n```</s>"
    return {"text": text}

print("Formatting dataset...")
train_dataset = train_dataset.map(format_example, remove_columns=train_dataset.column_names)
eval_dataset = eval_dataset.map(format_example, remove_columns=eval_dataset.column_names)
print("Dataset formatted")

# Load tokenizer
print(f"Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
print("Tokenizer loaded")

# 4-bit quantization
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
)

print(f"Loading model {MODEL_NAME}...")
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    quantization_config=bnb_config,
    device_map="auto",
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,
)
print("Model loaded")

# LoRA configuration
lora_config = LoraConfig(
    r=32,
    lora_alpha=64,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type=TaskType.CAUSAL_LM,
)

# Training config
training_config = SFTConfig(
    output_dir="./alizee-coder-devstral-1-small",
    num_train_epochs=1,
    per_device_train_batch_size=1,
    per_device_eval_batch_size=1,
    gradient_accumulation_steps=16,
    gradient_checkpointing=True,
    learning_rate=2e-4,
    lr_scheduler_type="cosine",
    warmup_ratio=0.1,
    max_seq_length=4096,
    logging_steps=10,
    save_strategy="steps",
    save_steps=200,
    eval_strategy="steps",
    eval_steps=200,
    bf16=True,
    push_to_hub=True,
    hub_model_id=OUTPUT_REPO,
    hub_strategy="every_save",
    report_to="trackio",
    run_name="alizee-coder-devstral-1-small",
)

print("Initializing trainer...")
trainer = SFTTrainer(
    model=model,
    args=training_config,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    peft_config=lora_config,
    tokenizer=tokenizer,
    dataset_text_field="text",
)

print("="*50)
print("STARTING TRAINING")
print("="*50)
trainer.train()

print("Pushing to Hub...")
trainer.push_to_hub()
print(f"Done! Model: https://huggingface.co/{OUTPUT_REPO}")