UltiVal: Ministral-8B QLoRA Adapter for Vulnerability Detection

This is a QLoRA adapter fine-tuned from Ministral-8B-Instruct-2410 for detecting security vulnerabilities in source code as part of the UltiVal project.

🚨 Important Note

This is a LoRA adapter, not a standalone model. You must load it together with the base model mistralai/Ministral-8B-Instruct-2410.

πŸ“‹ Model Details

  • Base Model: mistralai/Ministral-8B-Instruct-2410
  • Adapter Type: QLoRA (4-bit Low-Rank Adaptation)
  • Training Framework: Unsloth
  • Task: Security vulnerability detection in source code
  • Model Size: ~334MB (adapter only)
  • Context Length: 2048 tokens
  • Languages: Multi-language code analysis (Python, JavaScript, Java, C/C++, etc.)

🎯 Training Configuration

Parameter Value
Training Steps 6,000 (best checkpoint)
Total Steps 6,184
Validation Loss 0.5840 (lowest achieved at step 6000)
Final Training Loss 0.4081
Epochs 2
Learning Rate 2e-4 β†’ 1.76e-7 (cosine schedule)
Batch Size 8 (2 Γ— 4 gradient accumulation)
Sequence Length 2048 tokens
LoRA Rank 32
LoRA Alpha 32
LoRA Dropout 0.0
Weight Decay 0.01
Warmup Steps ~5% of total steps

Target Modules

q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj

πŸ”§ Usage

Option 1: Using Unsloth (Recommended)

from unsloth import FastLanguageModel
import torch

# Load base model
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="mistralai/Ministral-8B-Instruct-2410",
    max_seq_length=2048,
    dtype=None,
    load_in_4bit=True,
)

# Add LoRA configuration
model = FastLanguageModel.get_peft_model(
    model,
    r=32,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", 
                   "gate_proj", "up_proj", "down_proj"],
    lora_alpha=32,
    lora_dropout=0,
    bias="none",
    use_gradient_checkpointing="unsloth",
    random_state=3407,
)

# Load the trained adapter
model.load_adapter("starsofchance/Mistral-Unsloth-QLoRA-adapter")

# Enable inference mode
FastLanguageModel.for_inference(model)

Option 2: Using Transformers + PEFT

from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch

# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
    "mistralai/Ministral-8B-Instruct-2410",
    torch_dtype=torch.float16,
    device_map="auto",
    load_in_4bit=True
)

tokenizer = AutoTokenizer.from_pretrained("mistralai/Ministral-8B-Instruct-2410")

# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "starsofchance/Mistral-Unsloth-QLoRA-adapter")

πŸ’» Inference Example

# Example: SQL Injection Detection
code_snippet = '''
def authenticate_user(username, password):
    query = "SELECT * FROM users WHERE username='" + username + "' AND password='" + password + "'"
    cursor.execute(query)
    return cursor.fetchone()
'''

messages = [
    {"role": "user", "content": f"Analyze this code for security vulnerabilities:\n\n{code_snippet}"}
]

# Tokenize and generate
input_ids = tokenizer.apply_chat_template(
    messages, 
    add_generation_prompt=True, 
    return_tensors="pt"
).to(model.device)

outputs = model.generate(
    input_ids,
    max_new_tokens=512,
    do_sample=False,
    pad_token_id=tokenizer.eos_token_id,
    temperature=0.1
)

response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
print(response)

Expected Output

This code contains a critical SQL injection vulnerability. The user input (username and password) 
is directly concatenated into the SQL query without any sanitization or parameterization.

**Vulnerability Type**: SQL Injection (CWE-89)
**Severity**: High
**Location**: Line 2, query construction

**How to exploit**: An attacker could input malicious SQL code like:
- Username: `admin' --`
- Password: `anything`

**Secure fix**: Use parameterized queries:
```python
def authenticate_user(username, password):
    query = "SELECT * FROM users WHERE username=? AND password=?"
    cursor.execute(query, (username, password))
    return cursor.fetchone()

## πŸ›‘οΈ Supported Vulnerability Types

The model is trained to detect various security vulnerabilities including:

| Category | Examples |
|----------|----------|
| **Injection** | SQL Injection, Command Injection, LDAP Injection |
| **XSS** | Reflected XSS, Stored XSS, DOM-based XSS |
| **Authentication** | Weak passwords, Authentication bypass, Session management |
| **Authorization** | Privilege escalation, Access control issues |
| **Cryptography** | Weak encryption, Hardcoded keys, Improper random generation |
| **File Operations** | Path traversal, File inclusion, Unsafe deserialization |
| **Memory Safety** | Buffer overflow, Use after free, Memory leaks |
| **Web Security** | CSRF, SSRF, Insecure redirects |

## πŸ“Š Performance Metrics

### Training Progress
- **Initial Loss**: 1.5544
- **Final Loss**: 0.4081
- **Best Validation Loss**: 0.5840 (step 6000)
- **Training Duration**: ~15 hours
- **Convergence**: Stable convergence with cosine learning rate schedule

### Hardware Requirements
- **Training**: NVIDIA GPU with 4-bit quantization
- **Inference**: Can run on CPU or GPU (GPU recommended for speed)
- **Memory**: ~6GB GPU memory for inference with 4-bit quantization

## πŸ“ Repository Structure

starsofchance/Mistral-Unsloth-QLoRA-adapter/ β”œβ”€β”€ adapter_config.json # LoRA configuration β”œβ”€β”€ adapter_model.safetensors # Trained adapter weights (~334MB) β”œβ”€β”€ tokenizer.json # Tokenizer configuration β”œβ”€β”€ tokenizer_config.json # Tokenizer settings β”œβ”€β”€ special_tokens_map.json # Special tokens mapping └── README.md # This file


## ⚠️ Limitations

1. **Adapter Dependency**: Requires the base model to function
2. **Context Window**: Limited to 2048 tokens
3. **Language Coverage**: Primarily trained on common programming languages
4. **False Positives**: May flag secure code patterns as potentially vulnerable
5. **Novel Vulnerabilities**: May not detect cutting-edge or highly obfuscated attacks
6. **Code Context**: Performance depends on having sufficient code context

## πŸ”„ Integration Tips

### Batch Processing
```python
def analyze_multiple_files(code_files):
    results = []
    for file_path, code_content in code_files:
        # Analyze each file
        messages = [{"role": "user", "content": f"Analyze for vulnerabilities:\n\n{code_content}"}]
        # ... generate response
        results.append({"file": file_path, "analysis": response})
    return results

Custom Prompting

# For specific vulnerability types
prompt = f"""
Focus on SQL injection vulnerabilities in this code:
{code_snippet}

Provide:
1. Vulnerability assessment (Yes/No)
2. Risk level (Low/Medium/High/Critical)  
3. Specific location
4. Remediation steps
"""

πŸ“š Training Data

The model was fine-tuned on a curated dataset featuring:

  • Real-world vulnerabilities from CVE databases
  • Secure code patterns for contrast learning
  • Multi-language examples across different frameworks
  • Detailed explanations with remediation guidance
  • Context-rich examples showing vulnerability in realistic scenarios

πŸŽ“ Model Lineage

Ministral-8B-Instruct-2410 (Mistral AI)
    ↓
QLoRA Fine-tuning (Unsloth)
    ↓  
UltiVal Vulnerability Detection Adapter

πŸ“„ Citation

If you use this model in your research or applications, please cite:

@misc{ultival_mistral_lora_2025,
  title={UltiVal: Ministral-8B QLoRA Adapter for Vulnerability Detection},
  author={StarsOfChance},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/starsofchance/Mistral-Unsloth-QLoRA-adapter}
}

βš–οΈ License

This adapter inherits the license from the base model mistralai/Ministral-8B-Instruct-2410. Please refer to the base model's license for specific terms and conditions.

πŸ™ Acknowledgments

  • Unsloth Team: For the efficient LoRA fine-tuning framework
  • Mistral AI: For the powerful Ministral-8B-Instruct-2410 base model
  • Hugging Face: For the model hosting and PEFT library
  • UltiVal Project: Part of ongoing research in automated vulnerability detection

πŸ“ž Contact & Support

  • Issues: Report bugs or issues in the model repository
  • Updates: Follow for model updates and improvements
  • Community: Join discussions about vulnerability detection and code security

πŸ”’ Security Note: This model is designed to assist in security analysis but should not be the sole method for vulnerability assessment. Always conduct comprehensive security reviews with multiple tools and expert analysis.

Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for starsofchance/Mistral-Unsloth-QLoRA-adapter

Adapter
(70)
this model