medical-diagnosis-classifier
This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8761
- Accuracy: 0.5812
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.915 | 0.44 | 5000 | 0.9458 | 0.5413 |
0.9446 | 0.87 | 10000 | 0.9111 | 0.5734 |
0.9701 | 1.31 | 15000 | 0.9020 | 0.5728 |
1.0364 | 1.75 | 20000 | 0.9053 | 0.5746 |
1.0566 | 2.18 | 25000 | 0.8934 | 0.5723 |
0.7617 | 2.62 | 30000 | 0.8903 | 0.5697 |
0.8615 | 3.06 | 35000 | 0.8825 | 0.5886 |
0.8974 | 3.49 | 40000 | 0.8896 | 0.5760 |
0.877 | 3.93 | 45000 | 0.8854 | 0.5827 |
0.8099 | 4.37 | 50000 | 0.8864 | 0.5754 |
0.8527 | 4.8 | 55000 | 0.8825 | 0.5853 |
0.892 | 5.24 | 60000 | 0.8869 | 0.5714 |
1.0117 | 5.68 | 65000 | 0.8835 | 0.5780 |
0.8814 | 6.11 | 70000 | 0.8770 | 0.5812 |
1.0064 | 6.55 | 75000 | 0.8845 | 0.5771 |
0.9091 | 6.99 | 80000 | 0.8837 | 0.5740 |
0.8869 | 7.42 | 85000 | 0.8780 | 0.5839 |
0.9656 | 7.86 | 90000 | 0.8916 | 0.5668 |
0.8205 | 8.3 | 95000 | 0.8767 | 0.5855 |
0.9256 | 8.73 | 100000 | 0.8772 | 0.5840 |
0.8649 | 9.17 | 105000 | 0.8769 | 0.5824 |
0.9214 | 9.61 | 110000 | 0.8761 | 0.5812 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for stanpony/medical-diagnosis-classifier
Base model
google-bert/bert-base-cased