🧠 MicroGPT-Deva: Lightweight Sanskrit Generative LLM

MicroGPT-Deva is a compact decoder-only language model trained on Sanskrit text in Devanagari script, optimized for text generation tasks. It uses a custom transformer architecture with FlashAttention for efficient GPU utilization and fast decoding.

This model is ideal for:

  • Generating Sanskrit sentences or paragraphs
  • Educational chatbots or creative writing tools
  • Deployment on resource-constrained environments (single-GPU)

🛠️ Model Details

Property Value
Architecture Decoder-only Transformer
Vocabulary Size 12,000 (SentencePiece BPE)
Hidden Size 512
Layers 8
Attention Heads 8
Sequence Length 512 tokens
Parameters ~33M
FlashAttention ✅ Yes

📖 Training

  • Data: Custom Sanskrit dataset of over 100,000+ Devanagari .txt files.
  • Tokenizer: SentencePiece BPE model trained with character_coverage=1.0.
  • Training Platform: AWS SageMaker Tesla V100 GPU
  • Framework: PyTorch with custom FlashAttention blocks
  • Training Time: ~3 epochs with dynamic batching on sharded data

💬 Usage

🧪 In Python

import torch
import sentencepiece as spm
from microgpt_deva import MicroGPT, Config

# Load tokenizer
sp = spm.SentencePieceProcessor()
sp.load("devanagari.model")

# Load config and model
with open("config.json") as f:
    config = Config(json.load(f))

model = MicroGPT(config)
model.load_state_dict(torch.load("pytorch_model.bin"))
model.eval()

# Generate text
prompt = "कस्मिंश्चिन् नगराभ्याशे "
input_ids = torch.tensor([sp.encode(prompt, out_type=int)], dtype=torch.long)
with torch.no_grad():
    output = model.generate(input_ids, max_new_tokens=30)
print(sp.decode(output[0].tolist()))
Downloads last month
20
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support