demand-forecasting / src /functions /order_qty_rmse.py
zhang qiao
Upload folder using huggingface_hub
9ddee9f
raw
history blame contribute delete
318 Bytes
from sklearn.metrics import mean_squared_error
import numpy as np
def order_qty_rmse(actual, predicted):
actu = []
pred = []
for i, a in enumerate(actual):
if not a == 0:
actu.append(actual[i])
pred.append(predicted[i])
return np.sqrt(mean_squared_error(actu, pred))