Spaces:
Runtime error
Runtime error
zhang qiao
commited on
Commit
·
9ddee9f
1
Parent(s):
5e655a5
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +163 -0
- README.md +13 -8
- __init__.py +0 -0
- __pycache__/demo.cpython-310.pyc +0 -0
- best_models.csv +11 -0
- conda_installs.txt +13 -0
- data/continuous.csv +33 -0
- data/demand_forecasting_demo_data.csv +2573 -0
- data/demand_forecasting_demo_models.csv +11 -0
- data/fuzzy.csv +261 -0
- data/fuzzy_2.csv +37 -0
- data/resource.md +1 -0
- demo.py +121 -0
- environment.yml +222 -0
- forecast_result.csv +521 -0
- gr_app/GradioApp.py +162 -0
- gr_app/__init__.py +1 -0
- gr_app/__pycache__/GradioApp.cpython-310.pyc +0 -0
- gr_app/__pycache__/__init__.cpython-310.pyc +0 -0
- gr_app/__pycache__/args.cpython-310.pyc +0 -0
- gr_app/args.py +16 -0
- model.csv +11 -0
- notebooks/res.txt +0 -0
- notebooks/test.ipynb +828 -0
- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-310.pyc +0 -0
- src/__pycache__/__init__.cpython-311.pyc +0 -0
- src/__pycache__/avtive_models.cpython-310.pyc +0 -0
- src/__pycache__/main.cpython-310.pyc +0 -0
- src/__pycache__/main.cpython-311.pyc +0 -0
- src/avtive_models.py +19 -0
- src/forecast/Prophet.py +22 -0
- src/forecast/__init__.py +0 -0
- src/forecast/__pycache__/Prophet.cpython-310.pyc +0 -0
- src/forecast/__pycache__/Prophet.cpython-311.pyc +0 -0
- src/forecast/__pycache__/__init__.cpython-310.pyc +0 -0
- src/forecast/__pycache__/__init__.cpython-311.pyc +0 -0
- src/functions/__init__.py +0 -0
- src/functions/__pycache__/__init__.cpython-310.pyc +0 -0
- src/functions/__pycache__/__init__.cpython-311.pyc +0 -0
- src/functions/__pycache__/check_input.cpython-310.pyc +0 -0
- src/functions/__pycache__/check_input.cpython-311.pyc +0 -0
- src/functions/__pycache__/itmtt_scores.cpython-310.pyc +0 -0
- src/functions/__pycache__/mase.cpython-310.pyc +0 -0
- src/functions/__pycache__/order_qty_rmse.cpython-310.pyc +0 -0
- src/functions/check_input.py +5 -0
- src/functions/itmtt_scores.py +29 -0
- src/functions/mase.py +13 -0
- src/functions/order_qty_rmse.py +13 -0
- src/functions/sort_res.py +6 -0
.gitignore
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# poetry
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 102 |
+
#poetry.lock
|
| 103 |
+
|
| 104 |
+
# pdm
|
| 105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 106 |
+
#pdm.lock
|
| 107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 108 |
+
# in version control.
|
| 109 |
+
# https://pdm.fming.dev/#use-with-ide
|
| 110 |
+
.pdm.toml
|
| 111 |
+
|
| 112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 113 |
+
__pypackages__/
|
| 114 |
+
|
| 115 |
+
# Celery stuff
|
| 116 |
+
celerybeat-schedule
|
| 117 |
+
celerybeat.pid
|
| 118 |
+
|
| 119 |
+
# SageMath parsed files
|
| 120 |
+
*.sage.py
|
| 121 |
+
|
| 122 |
+
# Environments
|
| 123 |
+
.env
|
| 124 |
+
.venv
|
| 125 |
+
env/
|
| 126 |
+
venv/
|
| 127 |
+
ENV/
|
| 128 |
+
env.bak/
|
| 129 |
+
venv.bak/
|
| 130 |
+
|
| 131 |
+
# Spyder project settings
|
| 132 |
+
.spyderproject
|
| 133 |
+
.spyproject
|
| 134 |
+
|
| 135 |
+
# Rope project settings
|
| 136 |
+
.ropeproject
|
| 137 |
+
|
| 138 |
+
# mkdocs documentation
|
| 139 |
+
/site
|
| 140 |
+
|
| 141 |
+
# mypy
|
| 142 |
+
.mypy_cache/
|
| 143 |
+
.dmypy.json
|
| 144 |
+
dmypy.json
|
| 145 |
+
|
| 146 |
+
# Pyre type checker
|
| 147 |
+
.pyre/
|
| 148 |
+
|
| 149 |
+
# pytype static type analyzer
|
| 150 |
+
.pytype/
|
| 151 |
+
|
| 152 |
+
# Cython debug symbols
|
| 153 |
+
cython_debug/
|
| 154 |
+
|
| 155 |
+
# PyCharm
|
| 156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
+
#.idea/
|
| 161 |
+
|
| 162 |
+
.DS_Store
|
| 163 |
+
*/.DS_Store
|
README.md
CHANGED
|
@@ -1,12 +1,17 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
|
| 4 |
-
colorFrom: red
|
| 5 |
-
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: demand-forecasting
|
| 3 |
+
app_file: demo.py
|
|
|
|
|
|
|
| 4 |
sdk: gradio
|
| 5 |
+
sdk_version: 3.41.0
|
|
|
|
|
|
|
| 6 |
---
|
| 7 |
+
### Update conda environment
|
| 8 |
+
```sh
|
| 9 |
+
conda env update --file environment.yml --prune
|
| 10 |
+
```
|
| 11 |
|
| 12 |
+
### Add conda environment to ipykernel
|
| 13 |
+
```sh
|
| 14 |
+
python -m ipykernel install --user --name demand-forecasting
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
### to run gradio app
|
__init__.py
ADDED
|
File without changes
|
__pycache__/demo.cpython-310.pyc
ADDED
|
Binary file (3.47 kB). View file
|
|
|
best_models.csv
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
sku,best_model,characteristic,RMSE
|
| 2 |
+
sku-0,fft_plus,continuous,20.29778313018444
|
| 3 |
+
sku-1,holt_winters_plus,continuous,48.49842843820416
|
| 4 |
+
sku-2,prophet_plus,fuzzy,39.28846310729568
|
| 5 |
+
sku-3,prophet_plus,fuzzy_transient,14.593201789242087
|
| 6 |
+
sku-4,prophet_plus,fuzzy,10.7747925198657
|
| 7 |
+
sku-5,prophet_plus,fuzzy,28.33012802382216
|
| 8 |
+
sku-6,ceif_plus,fuzzy,37.84242038358283
|
| 9 |
+
sku-7,holt_winters_plus,continuous,15.959770854065722
|
| 10 |
+
sku-8,prophet_plus,fuzzy,13.778467035419936
|
| 11 |
+
sku-9,prophet_plus,fuzzy,12.843706019437128
|
conda_installs.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
conda install -c anaconda ipykernel -y
|
| 2 |
+
conda install -c anaconda urllib3 -y
|
| 3 |
+
conda install -c conda-forge gradio -y
|
| 4 |
+
conda install -c conda-forge prophet -y
|
| 5 |
+
|
| 6 |
+
conda install -c anaconda pandas -y
|
| 7 |
+
conda install scikit-learn -y
|
| 8 |
+
conda install -c intel pyyaml -y
|
| 9 |
+
conda install -c conda-forge python-dotenv -y
|
| 10 |
+
|
| 11 |
+
(if conda version of gradio doesn't work)
|
| 12 |
+
pip install gradio
|
| 13 |
+
|
data/continuous.csv
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datetime,y
|
| 2 |
+
2020-05-31,150.0
|
| 3 |
+
2020-06-30,508.0
|
| 4 |
+
2020-07-31,292.0
|
| 5 |
+
2020-08-31,800.0
|
| 6 |
+
2020-09-30,800.0
|
| 7 |
+
2020-10-31,800.0
|
| 8 |
+
2020-11-30,300.0
|
| 9 |
+
2020-12-31,300.0
|
| 10 |
+
2021-01-31,237.0
|
| 11 |
+
2021-02-28,237.0
|
| 12 |
+
2021-03-31,600.0
|
| 13 |
+
2021-04-30,200.0
|
| 14 |
+
2021-05-31,600.0
|
| 15 |
+
2021-06-30,400.0
|
| 16 |
+
2021-07-31,1300.0
|
| 17 |
+
2021-08-31,2000.0
|
| 18 |
+
2021-09-30,6500.0
|
| 19 |
+
2021-10-31,1100.0
|
| 20 |
+
2021-11-30,1000.0
|
| 21 |
+
2021-12-31,2000.0
|
| 22 |
+
2022-01-31,3000.0
|
| 23 |
+
2022-02-28,2200.0
|
| 24 |
+
2022-03-31,6800.0
|
| 25 |
+
2022-04-30,2000.0
|
| 26 |
+
2022-05-31,6000.0
|
| 27 |
+
2022-06-30,5300.0
|
| 28 |
+
2022-07-31,3000.0
|
| 29 |
+
2022-08-31,2900.0
|
| 30 |
+
2022-09-30,13600.0
|
| 31 |
+
2022-10-31,15400.0
|
| 32 |
+
2022-11-30,14800.0
|
| 33 |
+
2022-12-31,4000.0
|
data/demand_forecasting_demo_data.csv
ADDED
|
@@ -0,0 +1,2573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datetime,y,sku
|
| 2 |
+
2018-05-06,2,sku-0
|
| 3 |
+
2018-05-13,1,sku-0
|
| 4 |
+
2018-05-20,7,sku-0
|
| 5 |
+
2018-05-27,9,sku-0
|
| 6 |
+
2018-06-03,2,sku-0
|
| 7 |
+
2018-06-10,3,sku-0
|
| 8 |
+
2018-06-17,9,sku-0
|
| 9 |
+
2018-06-24,9,sku-0
|
| 10 |
+
2018-07-01,9,sku-0
|
| 11 |
+
2018-07-08,9,sku-0
|
| 12 |
+
2018-07-15,9,sku-0
|
| 13 |
+
2018-07-22,9,sku-0
|
| 14 |
+
2018-07-29,9,sku-0
|
| 15 |
+
2018-08-05,9,sku-0
|
| 16 |
+
2018-08-12,9,sku-0
|
| 17 |
+
2018-08-19,9,sku-0
|
| 18 |
+
2018-08-26,9,sku-0
|
| 19 |
+
2018-09-02,9,sku-0
|
| 20 |
+
2018-09-09,9,sku-0
|
| 21 |
+
2018-09-16,6,sku-0
|
| 22 |
+
2018-09-23,6,sku-0
|
| 23 |
+
2018-09-30,2,sku-0
|
| 24 |
+
2018-10-07,9,sku-0
|
| 25 |
+
2018-10-14,9,sku-0
|
| 26 |
+
2018-10-21,2,sku-0
|
| 27 |
+
2018-10-28,10,sku-0
|
| 28 |
+
2018-11-04,3,sku-0
|
| 29 |
+
2018-11-11,9,sku-0
|
| 30 |
+
2018-11-18,16,sku-0
|
| 31 |
+
2018-11-25,1,sku-0
|
| 32 |
+
2018-12-02,10,sku-0
|
| 33 |
+
2018-12-09,9,sku-0
|
| 34 |
+
2018-12-16,4,sku-0
|
| 35 |
+
2018-12-23,2,sku-0
|
| 36 |
+
2018-12-30,1,sku-0
|
| 37 |
+
2019-01-06,9,sku-0
|
| 38 |
+
2019-01-13,6,sku-0
|
| 39 |
+
2019-01-20,15,sku-0
|
| 40 |
+
2019-01-27,2,sku-0
|
| 41 |
+
2019-02-03,9,sku-0
|
| 42 |
+
2019-02-10,9,sku-0
|
| 43 |
+
2019-02-17,9,sku-0
|
| 44 |
+
2019-02-24,10,sku-0
|
| 45 |
+
2019-03-03,9,sku-0
|
| 46 |
+
2019-03-10,2,sku-0
|
| 47 |
+
2019-03-17,14,sku-0
|
| 48 |
+
2019-03-24,1,sku-0
|
| 49 |
+
2019-03-31,2,sku-0
|
| 50 |
+
2019-04-07,9,sku-0
|
| 51 |
+
2019-04-14,3,sku-0
|
| 52 |
+
2019-04-21,3,sku-0
|
| 53 |
+
2019-04-28,1,sku-0
|
| 54 |
+
2019-05-05,2,sku-0
|
| 55 |
+
2019-05-12,9,sku-0
|
| 56 |
+
2019-05-19,13,sku-0
|
| 57 |
+
2019-05-26,6,sku-0
|
| 58 |
+
2019-06-02,2,sku-0
|
| 59 |
+
2019-06-09,9,sku-0
|
| 60 |
+
2019-06-16,9,sku-0
|
| 61 |
+
2019-06-23,9,sku-0
|
| 62 |
+
2019-06-30,12,sku-0
|
| 63 |
+
2019-07-07,2,sku-0
|
| 64 |
+
2019-07-14,1,sku-0
|
| 65 |
+
2019-07-21,15,sku-0
|
| 66 |
+
2019-07-28,9,sku-0
|
| 67 |
+
2019-08-04,5,sku-0
|
| 68 |
+
2019-08-11,9,sku-0
|
| 69 |
+
2019-08-18,12,sku-0
|
| 70 |
+
2019-08-25,6,sku-0
|
| 71 |
+
2019-09-01,4,sku-0
|
| 72 |
+
2019-09-08,9,sku-0
|
| 73 |
+
2019-09-15,1,sku-0
|
| 74 |
+
2019-09-22,20,sku-0
|
| 75 |
+
2019-09-29,9,sku-0
|
| 76 |
+
2019-10-06,9,sku-0
|
| 77 |
+
2019-10-13,4,sku-0
|
| 78 |
+
2019-10-20,4,sku-0
|
| 79 |
+
2019-10-27,9,sku-0
|
| 80 |
+
2019-11-03,17,sku-0
|
| 81 |
+
2019-11-10,1,sku-0
|
| 82 |
+
2019-11-17,11,sku-0
|
| 83 |
+
2019-11-24,5,sku-0
|
| 84 |
+
2019-12-01,7,sku-0
|
| 85 |
+
2019-12-08,4,sku-0
|
| 86 |
+
2019-12-15,9,sku-0
|
| 87 |
+
2019-12-22,9,sku-0
|
| 88 |
+
2019-12-29,13,sku-0
|
| 89 |
+
2020-01-05,9,sku-0
|
| 90 |
+
2020-01-12,15,sku-0
|
| 91 |
+
2020-01-19,3,sku-0
|
| 92 |
+
2020-01-26,3,sku-0
|
| 93 |
+
2020-02-02,4,sku-0
|
| 94 |
+
2020-02-09,8,sku-0
|
| 95 |
+
2020-02-16,30,sku-0
|
| 96 |
+
2020-02-23,9,sku-0
|
| 97 |
+
2020-03-01,9,sku-0
|
| 98 |
+
2020-03-08,9,sku-0
|
| 99 |
+
2020-03-15,9,sku-0
|
| 100 |
+
2020-03-22,8,sku-0
|
| 101 |
+
2020-03-29,9,sku-0
|
| 102 |
+
2020-04-05,9,sku-0
|
| 103 |
+
2020-04-12,9,sku-0
|
| 104 |
+
2020-04-19,9,sku-0
|
| 105 |
+
2020-04-26,9,sku-0
|
| 106 |
+
2020-05-03,9,sku-0
|
| 107 |
+
2020-05-10,9,sku-0
|
| 108 |
+
2020-05-17,9,sku-0
|
| 109 |
+
2020-05-24,9,sku-0
|
| 110 |
+
2020-05-31,9,sku-0
|
| 111 |
+
2020-06-07,9,sku-0
|
| 112 |
+
2020-06-14,20,sku-0
|
| 113 |
+
2020-06-21,9,sku-0
|
| 114 |
+
2020-06-28,9,sku-0
|
| 115 |
+
2020-07-05,9,sku-0
|
| 116 |
+
2020-07-12,9,sku-0
|
| 117 |
+
2020-07-19,4,sku-0
|
| 118 |
+
2020-07-26,13,sku-0
|
| 119 |
+
2020-08-02,9,sku-0
|
| 120 |
+
2020-08-09,9,sku-0
|
| 121 |
+
2020-08-16,9,sku-0
|
| 122 |
+
2020-08-23,21,sku-0
|
| 123 |
+
2020-08-30,4,sku-0
|
| 124 |
+
2020-09-06,9,sku-0
|
| 125 |
+
2020-09-13,2,sku-0
|
| 126 |
+
2020-09-20,15,sku-0
|
| 127 |
+
2020-09-27,4,sku-0
|
| 128 |
+
2020-10-04,9,sku-0
|
| 129 |
+
2020-10-11,4,sku-0
|
| 130 |
+
2020-10-18,4,sku-0
|
| 131 |
+
2020-10-25,17,sku-0
|
| 132 |
+
2020-11-01,16,sku-0
|
| 133 |
+
2020-11-08,9,sku-0
|
| 134 |
+
2020-11-15,9,sku-0
|
| 135 |
+
2020-11-22,22,sku-0
|
| 136 |
+
2020-11-29,1,sku-0
|
| 137 |
+
2020-12-06,6,sku-0
|
| 138 |
+
2020-12-13,6,sku-0
|
| 139 |
+
2020-12-20,25,sku-0
|
| 140 |
+
2020-12-27,10,sku-0
|
| 141 |
+
2021-01-03,9,sku-0
|
| 142 |
+
2021-01-10,25,sku-0
|
| 143 |
+
2021-01-17,40,sku-0
|
| 144 |
+
2021-01-24,40,sku-0
|
| 145 |
+
2021-01-31,6,sku-0
|
| 146 |
+
2021-02-07,20,sku-0
|
| 147 |
+
2021-02-14,35,sku-0
|
| 148 |
+
2021-02-21,9,sku-0
|
| 149 |
+
2021-02-28,20,sku-0
|
| 150 |
+
2021-03-07,9,sku-0
|
| 151 |
+
2021-03-14,9,sku-0
|
| 152 |
+
2021-03-21,50,sku-0
|
| 153 |
+
2021-03-28,35,sku-0
|
| 154 |
+
2021-04-04,9,sku-0
|
| 155 |
+
2021-04-11,20,sku-0
|
| 156 |
+
2021-04-18,20,sku-0
|
| 157 |
+
2021-04-25,10,sku-0
|
| 158 |
+
2021-05-02,20,sku-0
|
| 159 |
+
2021-05-09,9,sku-0
|
| 160 |
+
2021-05-16,9,sku-0
|
| 161 |
+
2021-05-23,9,sku-0
|
| 162 |
+
2021-05-30,9,sku-0
|
| 163 |
+
2021-06-06,9,sku-0
|
| 164 |
+
2021-06-13,9,sku-0
|
| 165 |
+
2021-06-20,9,sku-0
|
| 166 |
+
2021-06-27,9,sku-0
|
| 167 |
+
2021-07-04,9,sku-0
|
| 168 |
+
2021-07-11,5,sku-0
|
| 169 |
+
2021-07-18,5,sku-0
|
| 170 |
+
2021-07-25,9,sku-0
|
| 171 |
+
2021-08-01,9,sku-0
|
| 172 |
+
2021-08-08,9,sku-0
|
| 173 |
+
2021-08-15,9,sku-0
|
| 174 |
+
2021-08-22,20,sku-0
|
| 175 |
+
2021-08-29,20,sku-0
|
| 176 |
+
2021-09-05,2,sku-0
|
| 177 |
+
2021-09-12,9,sku-0
|
| 178 |
+
2021-09-19,9,sku-0
|
| 179 |
+
2021-09-26,10,sku-0
|
| 180 |
+
2021-10-03,9,sku-0
|
| 181 |
+
2021-10-10,9,sku-0
|
| 182 |
+
2021-10-17,1,sku-0
|
| 183 |
+
2021-10-24,5,sku-0
|
| 184 |
+
2021-10-31,10,sku-0
|
| 185 |
+
2021-11-07,25,sku-0
|
| 186 |
+
2021-11-14,22,sku-0
|
| 187 |
+
2021-11-21,23,sku-0
|
| 188 |
+
2021-11-28,7,sku-0
|
| 189 |
+
2021-12-05,9,sku-0
|
| 190 |
+
2021-12-12,12,sku-0
|
| 191 |
+
2021-12-19,18,sku-0
|
| 192 |
+
2021-12-26,9,sku-0
|
| 193 |
+
2022-01-02,35,sku-0
|
| 194 |
+
2022-01-09,9,sku-0
|
| 195 |
+
2022-01-16,20,sku-0
|
| 196 |
+
2022-01-23,20,sku-0
|
| 197 |
+
2022-01-30,10,sku-0
|
| 198 |
+
2022-02-06,10,sku-0
|
| 199 |
+
2022-02-13,22,sku-0
|
| 200 |
+
2022-02-20,49,sku-0
|
| 201 |
+
2022-02-27,10,sku-0
|
| 202 |
+
2022-03-06,9,sku-0
|
| 203 |
+
2022-03-13,9,sku-0
|
| 204 |
+
2022-03-20,9,sku-0
|
| 205 |
+
2022-03-27,9,sku-0
|
| 206 |
+
2022-04-03,9,sku-0
|
| 207 |
+
2022-04-10,10,sku-0
|
| 208 |
+
2022-04-17,9,sku-0
|
| 209 |
+
2022-04-24,20,sku-0
|
| 210 |
+
2022-05-01,9,sku-0
|
| 211 |
+
2022-05-08,9,sku-0
|
| 212 |
+
2022-05-15,9,sku-0
|
| 213 |
+
2022-05-22,50,sku-0
|
| 214 |
+
2022-05-29,9,sku-0
|
| 215 |
+
2022-06-05,9,sku-0
|
| 216 |
+
2022-06-12,30,sku-0
|
| 217 |
+
2022-06-19,10,sku-0
|
| 218 |
+
2022-06-26,10,sku-0
|
| 219 |
+
2022-07-03,5,sku-0
|
| 220 |
+
2022-07-10,30,sku-0
|
| 221 |
+
2022-07-17,20,sku-0
|
| 222 |
+
2022-07-24,50,sku-0
|
| 223 |
+
2022-07-31,9,sku-0
|
| 224 |
+
2022-08-07,100,sku-0
|
| 225 |
+
2022-08-14,34,sku-0
|
| 226 |
+
2022-08-21,9,sku-0
|
| 227 |
+
2022-08-28,10,sku-0
|
| 228 |
+
2022-09-04,42,sku-0
|
| 229 |
+
2022-09-11,30,sku-0
|
| 230 |
+
2022-09-18,29,sku-0
|
| 231 |
+
2022-09-25,8,sku-0
|
| 232 |
+
2022-10-02,10,sku-0
|
| 233 |
+
2022-10-09,9,sku-0
|
| 234 |
+
2022-10-16,9,sku-0
|
| 235 |
+
2022-10-23,9,sku-0
|
| 236 |
+
2022-10-30,9,sku-0
|
| 237 |
+
2022-11-06,9,sku-0
|
| 238 |
+
2022-11-13,9,sku-0
|
| 239 |
+
2022-11-20,20,sku-0
|
| 240 |
+
2022-11-27,10,sku-0
|
| 241 |
+
2022-12-04,9,sku-0
|
| 242 |
+
2022-12-11,9,sku-0
|
| 243 |
+
2022-12-18,35,sku-0
|
| 244 |
+
2022-12-25,60,sku-0
|
| 245 |
+
2023-01-01,15,sku-0
|
| 246 |
+
2023-01-08,5,sku-0
|
| 247 |
+
2023-01-15,70,sku-0
|
| 248 |
+
2023-01-22,20,sku-0
|
| 249 |
+
2023-01-29,1,sku-0
|
| 250 |
+
2023-02-05,9,sku-0
|
| 251 |
+
2023-02-12,9,sku-0
|
| 252 |
+
2023-02-19,100,sku-0
|
| 253 |
+
2023-02-26,40,sku-0
|
| 254 |
+
2023-03-05,40,sku-0
|
| 255 |
+
2023-03-12,9,sku-0
|
| 256 |
+
2023-03-19,5,sku-0
|
| 257 |
+
2023-03-26,9,sku-0
|
| 258 |
+
2023-04-02,30,sku-0
|
| 259 |
+
2023-04-09,50,sku-0
|
| 260 |
+
2023-04-16,9,sku-0
|
| 261 |
+
2023-04-23,20,sku-0
|
| 262 |
+
2018-05-06,5,sku-1
|
| 263 |
+
2018-05-13,20,sku-1
|
| 264 |
+
2018-05-20,31,sku-1
|
| 265 |
+
2018-05-27,10,sku-1
|
| 266 |
+
2018-06-03,60,sku-1
|
| 267 |
+
2018-06-10,31,sku-1
|
| 268 |
+
2018-06-17,31,sku-1
|
| 269 |
+
2018-06-24,5,sku-1
|
| 270 |
+
2018-07-01,31,sku-1
|
| 271 |
+
2018-07-08,30,sku-1
|
| 272 |
+
2018-07-15,31,sku-1
|
| 273 |
+
2018-07-22,31,sku-1
|
| 274 |
+
2018-07-29,31,sku-1
|
| 275 |
+
2018-08-05,10,sku-1
|
| 276 |
+
2018-08-12,31,sku-1
|
| 277 |
+
2018-08-19,31,sku-1
|
| 278 |
+
2018-08-26,15,sku-1
|
| 279 |
+
2018-09-02,31,sku-1
|
| 280 |
+
2018-09-09,31,sku-1
|
| 281 |
+
2018-09-16,25,sku-1
|
| 282 |
+
2018-09-23,5,sku-1
|
| 283 |
+
2018-09-30,45,sku-1
|
| 284 |
+
2018-10-07,20,sku-1
|
| 285 |
+
2018-10-14,25,sku-1
|
| 286 |
+
2018-10-21,31,sku-1
|
| 287 |
+
2018-10-28,40,sku-1
|
| 288 |
+
2018-11-04,20,sku-1
|
| 289 |
+
2018-11-11,31,sku-1
|
| 290 |
+
2018-11-18,31,sku-1
|
| 291 |
+
2018-11-25,31,sku-1
|
| 292 |
+
2018-12-02,40,sku-1
|
| 293 |
+
2018-12-09,10,sku-1
|
| 294 |
+
2018-12-16,45,sku-1
|
| 295 |
+
2018-12-23,31,sku-1
|
| 296 |
+
2018-12-30,15,sku-1
|
| 297 |
+
2019-01-06,31,sku-1
|
| 298 |
+
2019-01-13,35,sku-1
|
| 299 |
+
2019-01-20,20,sku-1
|
| 300 |
+
2019-01-27,15,sku-1
|
| 301 |
+
2019-02-03,25,sku-1
|
| 302 |
+
2019-02-10,35,sku-1
|
| 303 |
+
2019-02-17,31,sku-1
|
| 304 |
+
2019-02-24,50,sku-1
|
| 305 |
+
2019-03-03,60,sku-1
|
| 306 |
+
2019-03-10,100,sku-1
|
| 307 |
+
2019-03-17,31,sku-1
|
| 308 |
+
2019-03-24,31,sku-1
|
| 309 |
+
2019-03-31,55,sku-1
|
| 310 |
+
2019-04-07,35,sku-1
|
| 311 |
+
2019-04-14,80,sku-1
|
| 312 |
+
2019-04-21,10,sku-1
|
| 313 |
+
2019-04-28,10,sku-1
|
| 314 |
+
2019-05-05,5,sku-1
|
| 315 |
+
2019-05-12,30,sku-1
|
| 316 |
+
2019-05-19,60,sku-1
|
| 317 |
+
2019-05-26,35,sku-1
|
| 318 |
+
2019-06-02,15,sku-1
|
| 319 |
+
2019-06-09,31,sku-1
|
| 320 |
+
2019-06-16,31,sku-1
|
| 321 |
+
2019-06-23,31,sku-1
|
| 322 |
+
2019-06-30,85,sku-1
|
| 323 |
+
2019-07-07,20,sku-1
|
| 324 |
+
2019-07-14,25,sku-1
|
| 325 |
+
2019-07-21,15,sku-1
|
| 326 |
+
2019-07-28,31,sku-1
|
| 327 |
+
2019-08-04,15,sku-1
|
| 328 |
+
2019-08-11,20,sku-1
|
| 329 |
+
2019-08-18,50,sku-1
|
| 330 |
+
2019-08-25,31,sku-1
|
| 331 |
+
2019-09-01,40,sku-1
|
| 332 |
+
2019-09-08,10,sku-1
|
| 333 |
+
2019-09-15,31,sku-1
|
| 334 |
+
2019-09-22,31,sku-1
|
| 335 |
+
2019-09-29,31,sku-1
|
| 336 |
+
2019-10-06,75,sku-1
|
| 337 |
+
2019-10-13,31,sku-1
|
| 338 |
+
2019-10-20,10,sku-1
|
| 339 |
+
2019-10-27,31,sku-1
|
| 340 |
+
2019-11-03,45,sku-1
|
| 341 |
+
2019-11-10,20,sku-1
|
| 342 |
+
2019-11-17,30,sku-1
|
| 343 |
+
2019-11-24,30,sku-1
|
| 344 |
+
2019-12-01,60,sku-1
|
| 345 |
+
2019-12-08,10,sku-1
|
| 346 |
+
2019-12-15,14,sku-1
|
| 347 |
+
2019-12-22,14,sku-1
|
| 348 |
+
2019-12-29,40,sku-1
|
| 349 |
+
2020-01-05,31,sku-1
|
| 350 |
+
2020-01-12,10,sku-1
|
| 351 |
+
2020-01-19,15,sku-1
|
| 352 |
+
2020-01-26,31,sku-1
|
| 353 |
+
2020-02-02,20,sku-1
|
| 354 |
+
2020-02-09,22,sku-1
|
| 355 |
+
2020-02-16,50,sku-1
|
| 356 |
+
2020-02-23,100,sku-1
|
| 357 |
+
2020-03-01,31,sku-1
|
| 358 |
+
2020-03-08,20,sku-1
|
| 359 |
+
2020-03-15,35,sku-1
|
| 360 |
+
2020-03-22,114,sku-1
|
| 361 |
+
2020-03-29,15,sku-1
|
| 362 |
+
2020-04-05,25,sku-1
|
| 363 |
+
2020-04-12,31,sku-1
|
| 364 |
+
2020-04-19,31,sku-1
|
| 365 |
+
2020-04-26,31,sku-1
|
| 366 |
+
2020-05-03,31,sku-1
|
| 367 |
+
2020-05-10,31,sku-1
|
| 368 |
+
2020-05-17,15,sku-1
|
| 369 |
+
2020-05-24,31,sku-1
|
| 370 |
+
2020-05-31,15,sku-1
|
| 371 |
+
2020-06-07,60,sku-1
|
| 372 |
+
2020-06-14,32,sku-1
|
| 373 |
+
2020-06-21,75,sku-1
|
| 374 |
+
2020-06-28,10,sku-1
|
| 375 |
+
2020-07-05,45,sku-1
|
| 376 |
+
2020-07-12,90,sku-1
|
| 377 |
+
2020-07-19,15,sku-1
|
| 378 |
+
2020-07-26,135,sku-1
|
| 379 |
+
2020-08-02,31,sku-1
|
| 380 |
+
2020-08-09,31,sku-1
|
| 381 |
+
2020-08-16,31,sku-1
|
| 382 |
+
2020-08-23,250,sku-1
|
| 383 |
+
2020-08-30,31,sku-1
|
| 384 |
+
2020-09-06,31,sku-1
|
| 385 |
+
2020-09-13,5,sku-1
|
| 386 |
+
2020-09-20,31,sku-1
|
| 387 |
+
2020-09-27,60,sku-1
|
| 388 |
+
2020-10-04,15,sku-1
|
| 389 |
+
2020-10-11,10,sku-1
|
| 390 |
+
2020-10-18,35,sku-1
|
| 391 |
+
2020-10-25,31,sku-1
|
| 392 |
+
2020-11-01,15,sku-1
|
| 393 |
+
2020-11-08,25,sku-1
|
| 394 |
+
2020-11-15,80,sku-1
|
| 395 |
+
2020-11-22,45,sku-1
|
| 396 |
+
2020-11-29,25,sku-1
|
| 397 |
+
2020-12-06,25,sku-1
|
| 398 |
+
2020-12-13,10,sku-1
|
| 399 |
+
2020-12-20,10,sku-1
|
| 400 |
+
2020-12-27,15,sku-1
|
| 401 |
+
2021-01-03,31,sku-1
|
| 402 |
+
2021-01-10,31,sku-1
|
| 403 |
+
2021-01-17,31,sku-1
|
| 404 |
+
2021-01-24,15,sku-1
|
| 405 |
+
2021-01-31,35,sku-1
|
| 406 |
+
2021-02-07,31,sku-1
|
| 407 |
+
2021-02-14,31,sku-1
|
| 408 |
+
2021-02-21,31,sku-1
|
| 409 |
+
2021-02-28,5,sku-1
|
| 410 |
+
2021-03-07,45,sku-1
|
| 411 |
+
2021-03-14,35,sku-1
|
| 412 |
+
2021-03-21,57,sku-1
|
| 413 |
+
2021-03-28,250,sku-1
|
| 414 |
+
2021-04-04,31,sku-1
|
| 415 |
+
2021-04-11,31,sku-1
|
| 416 |
+
2021-04-18,31,sku-1
|
| 417 |
+
2021-04-25,40,sku-1
|
| 418 |
+
2021-05-02,145,sku-1
|
| 419 |
+
2021-05-09,40,sku-1
|
| 420 |
+
2021-05-16,31,sku-1
|
| 421 |
+
2021-05-23,20,sku-1
|
| 422 |
+
2021-05-30,31,sku-1
|
| 423 |
+
2021-06-06,40,sku-1
|
| 424 |
+
2021-06-13,30,sku-1
|
| 425 |
+
2021-06-20,10,sku-1
|
| 426 |
+
2021-06-27,60,sku-1
|
| 427 |
+
2021-07-04,31,sku-1
|
| 428 |
+
2021-07-11,100,sku-1
|
| 429 |
+
2021-07-18,30,sku-1
|
| 430 |
+
2021-07-25,31,sku-1
|
| 431 |
+
2021-08-01,31,sku-1
|
| 432 |
+
2021-08-08,31,sku-1
|
| 433 |
+
2021-08-15,31,sku-1
|
| 434 |
+
2021-08-22,50,sku-1
|
| 435 |
+
2021-08-29,120,sku-1
|
| 436 |
+
2021-09-05,100,sku-1
|
| 437 |
+
2021-09-12,100,sku-1
|
| 438 |
+
2021-09-19,31,sku-1
|
| 439 |
+
2021-09-26,80,sku-1
|
| 440 |
+
2021-10-03,31,sku-1
|
| 441 |
+
2021-10-10,31,sku-1
|
| 442 |
+
2021-10-17,31,sku-1
|
| 443 |
+
2021-10-24,31,sku-1
|
| 444 |
+
2021-10-31,20,sku-1
|
| 445 |
+
2021-11-07,31,sku-1
|
| 446 |
+
2021-11-14,31,sku-1
|
| 447 |
+
2021-11-21,31,sku-1
|
| 448 |
+
2021-11-28,28,sku-1
|
| 449 |
+
2021-12-05,150,sku-1
|
| 450 |
+
2021-12-12,39,sku-1
|
| 451 |
+
2021-12-19,31,sku-1
|
| 452 |
+
2021-12-26,31,sku-1
|
| 453 |
+
2022-01-02,15,sku-1
|
| 454 |
+
2022-01-09,31,sku-1
|
| 455 |
+
2022-01-16,31,sku-1
|
| 456 |
+
2022-01-23,95,sku-1
|
| 457 |
+
2022-01-30,115,sku-1
|
| 458 |
+
2022-02-06,31,sku-1
|
| 459 |
+
2022-02-13,75,sku-1
|
| 460 |
+
2022-02-20,122,sku-1
|
| 461 |
+
2022-02-27,31,sku-1
|
| 462 |
+
2022-03-06,31,sku-1
|
| 463 |
+
2022-03-13,31,sku-1
|
| 464 |
+
2022-03-20,31,sku-1
|
| 465 |
+
2022-03-27,31,sku-1
|
| 466 |
+
2022-04-03,31,sku-1
|
| 467 |
+
2022-04-10,50,sku-1
|
| 468 |
+
2022-04-17,40,sku-1
|
| 469 |
+
2022-04-24,80,sku-1
|
| 470 |
+
2022-05-01,20,sku-1
|
| 471 |
+
2022-05-08,31,sku-1
|
| 472 |
+
2022-05-15,20,sku-1
|
| 473 |
+
2022-05-22,31,sku-1
|
| 474 |
+
2022-05-29,31,sku-1
|
| 475 |
+
2022-06-05,125,sku-1
|
| 476 |
+
2022-06-12,250,sku-1
|
| 477 |
+
2022-06-19,100,sku-1
|
| 478 |
+
2022-06-26,31,sku-1
|
| 479 |
+
2022-07-03,31,sku-1
|
| 480 |
+
2022-07-10,31,sku-1
|
| 481 |
+
2022-07-17,32,sku-1
|
| 482 |
+
2022-07-24,31,sku-1
|
| 483 |
+
2022-07-31,31,sku-1
|
| 484 |
+
2022-08-07,90,sku-1
|
| 485 |
+
2022-08-14,57,sku-1
|
| 486 |
+
2022-08-21,31,sku-1
|
| 487 |
+
2022-08-28,71,sku-1
|
| 488 |
+
2022-09-04,138,sku-1
|
| 489 |
+
2022-09-11,100,sku-1
|
| 490 |
+
2022-09-18,30,sku-1
|
| 491 |
+
2022-09-25,46,sku-1
|
| 492 |
+
2022-10-02,50,sku-1
|
| 493 |
+
2022-10-09,200,sku-1
|
| 494 |
+
2022-10-16,31,sku-1
|
| 495 |
+
2022-10-23,31,sku-1
|
| 496 |
+
2022-10-30,31,sku-1
|
| 497 |
+
2022-11-06,31,sku-1
|
| 498 |
+
2022-11-13,31,sku-1
|
| 499 |
+
2022-11-20,31,sku-1
|
| 500 |
+
2022-11-27,31,sku-1
|
| 501 |
+
2022-12-04,31,sku-1
|
| 502 |
+
2022-12-11,90,sku-1
|
| 503 |
+
2022-12-18,31,sku-1
|
| 504 |
+
2022-12-25,60,sku-1
|
| 505 |
+
2023-01-01,50,sku-1
|
| 506 |
+
2023-01-08,10,sku-1
|
| 507 |
+
2023-01-15,31,sku-1
|
| 508 |
+
2023-01-22,50,sku-1
|
| 509 |
+
2023-01-29,31,sku-1
|
| 510 |
+
2023-02-05,150,sku-1
|
| 511 |
+
2023-02-12,200,sku-1
|
| 512 |
+
2023-02-19,80,sku-1
|
| 513 |
+
2023-02-26,150,sku-1
|
| 514 |
+
2023-03-05,31,sku-1
|
| 515 |
+
2023-03-12,31,sku-1
|
| 516 |
+
2023-03-19,90,sku-1
|
| 517 |
+
2023-03-26,55,sku-1
|
| 518 |
+
2023-04-02,20,sku-1
|
| 519 |
+
2023-04-09,250,sku-1
|
| 520 |
+
2018-05-06,11,sku-2
|
| 521 |
+
2018-05-13,6,sku-2
|
| 522 |
+
2018-05-20,4,sku-2
|
| 523 |
+
2018-05-27,8,sku-2
|
| 524 |
+
2018-06-03,1,sku-2
|
| 525 |
+
2018-06-10,3,sku-2
|
| 526 |
+
2018-06-17,0,sku-2
|
| 527 |
+
2018-06-24,8,sku-2
|
| 528 |
+
2018-07-01,3,sku-2
|
| 529 |
+
2018-07-08,0,sku-2
|
| 530 |
+
2018-07-15,2,sku-2
|
| 531 |
+
2018-07-22,2,sku-2
|
| 532 |
+
2018-07-29,0,sku-2
|
| 533 |
+
2018-08-05,10,sku-2
|
| 534 |
+
2018-08-12,3,sku-2
|
| 535 |
+
2018-08-19,9,sku-2
|
| 536 |
+
2018-08-26,5,sku-2
|
| 537 |
+
2018-09-02,0,sku-2
|
| 538 |
+
2018-09-09,0,sku-2
|
| 539 |
+
2018-09-16,2,sku-2
|
| 540 |
+
2018-09-23,10,sku-2
|
| 541 |
+
2018-09-30,2,sku-2
|
| 542 |
+
2018-10-07,10,sku-2
|
| 543 |
+
2018-10-14,0,sku-2
|
| 544 |
+
2018-10-21,0,sku-2
|
| 545 |
+
2018-10-28,10,sku-2
|
| 546 |
+
2018-11-04,0,sku-2
|
| 547 |
+
2018-11-11,0,sku-2
|
| 548 |
+
2018-11-18,7,sku-2
|
| 549 |
+
2018-11-25,7,sku-2
|
| 550 |
+
2018-12-02,13,sku-2
|
| 551 |
+
2018-12-09,1,sku-2
|
| 552 |
+
2018-12-16,1,sku-2
|
| 553 |
+
2018-12-23,4,sku-2
|
| 554 |
+
2018-12-30,10,sku-2
|
| 555 |
+
2019-01-06,0,sku-2
|
| 556 |
+
2019-01-13,6,sku-2
|
| 557 |
+
2019-01-20,3,sku-2
|
| 558 |
+
2019-01-27,2,sku-2
|
| 559 |
+
2019-02-03,3,sku-2
|
| 560 |
+
2019-02-10,5,sku-2
|
| 561 |
+
2019-02-17,0,sku-2
|
| 562 |
+
2019-02-24,4,sku-2
|
| 563 |
+
2019-03-03,5,sku-2
|
| 564 |
+
2019-03-10,0,sku-2
|
| 565 |
+
2019-03-17,1,sku-2
|
| 566 |
+
2019-03-24,3,sku-2
|
| 567 |
+
2019-03-31,8,sku-2
|
| 568 |
+
2019-04-07,6,sku-2
|
| 569 |
+
2019-04-14,7,sku-2
|
| 570 |
+
2019-04-21,3,sku-2
|
| 571 |
+
2019-04-28,3,sku-2
|
| 572 |
+
2019-05-05,2,sku-2
|
| 573 |
+
2019-05-12,6,sku-2
|
| 574 |
+
2019-05-19,6,sku-2
|
| 575 |
+
2019-05-26,5,sku-2
|
| 576 |
+
2019-06-02,0,sku-2
|
| 577 |
+
2019-06-09,0,sku-2
|
| 578 |
+
2019-06-16,0,sku-2
|
| 579 |
+
2019-06-23,10,sku-2
|
| 580 |
+
2019-06-30,4,sku-2
|
| 581 |
+
2019-07-07,4,sku-2
|
| 582 |
+
2019-07-14,4,sku-2
|
| 583 |
+
2019-07-21,1,sku-2
|
| 584 |
+
2019-07-28,0,sku-2
|
| 585 |
+
2019-08-04,13,sku-2
|
| 586 |
+
2019-08-11,8,sku-2
|
| 587 |
+
2019-08-18,5,sku-2
|
| 588 |
+
2019-08-25,4,sku-2
|
| 589 |
+
2019-09-01,8,sku-2
|
| 590 |
+
2019-09-08,6,sku-2
|
| 591 |
+
2019-09-15,3,sku-2
|
| 592 |
+
2019-09-22,1,sku-2
|
| 593 |
+
2019-09-29,0,sku-2
|
| 594 |
+
2019-10-06,7,sku-2
|
| 595 |
+
2019-10-13,7,sku-2
|
| 596 |
+
2019-10-20,20,sku-2
|
| 597 |
+
2019-10-27,0,sku-2
|
| 598 |
+
2019-11-03,4,sku-2
|
| 599 |
+
2019-11-10,3,sku-2
|
| 600 |
+
2019-11-17,3,sku-2
|
| 601 |
+
2019-11-24,10,sku-2
|
| 602 |
+
2019-12-01,12,sku-2
|
| 603 |
+
2019-12-08,1,sku-2
|
| 604 |
+
2019-12-15,5,sku-2
|
| 605 |
+
2019-12-22,5,sku-2
|
| 606 |
+
2019-12-29,4,sku-2
|
| 607 |
+
2020-01-05,0,sku-2
|
| 608 |
+
2020-01-12,10,sku-2
|
| 609 |
+
2020-01-19,1,sku-2
|
| 610 |
+
2020-01-26,4,sku-2
|
| 611 |
+
2020-02-02,6,sku-2
|
| 612 |
+
2020-02-09,5,sku-2
|
| 613 |
+
2020-02-16,20,sku-2
|
| 614 |
+
2020-02-23,0,sku-2
|
| 615 |
+
2020-03-01,0,sku-2
|
| 616 |
+
2020-03-08,0,sku-2
|
| 617 |
+
2020-03-15,0,sku-2
|
| 618 |
+
2020-03-22,5,sku-2
|
| 619 |
+
2020-03-29,0,sku-2
|
| 620 |
+
2020-04-05,0,sku-2
|
| 621 |
+
2020-04-12,0,sku-2
|
| 622 |
+
2020-04-19,0,sku-2
|
| 623 |
+
2020-04-26,0,sku-2
|
| 624 |
+
2020-05-03,0,sku-2
|
| 625 |
+
2020-05-10,0,sku-2
|
| 626 |
+
2020-05-17,0,sku-2
|
| 627 |
+
2020-05-24,0,sku-2
|
| 628 |
+
2020-05-31,0,sku-2
|
| 629 |
+
2020-06-07,0,sku-2
|
| 630 |
+
2020-06-14,20,sku-2
|
| 631 |
+
2020-06-21,25,sku-2
|
| 632 |
+
2020-06-28,0,sku-2
|
| 633 |
+
2020-07-05,0,sku-2
|
| 634 |
+
2020-07-12,0,sku-2
|
| 635 |
+
2020-07-19,0,sku-2
|
| 636 |
+
2020-07-26,30,sku-2
|
| 637 |
+
2020-08-02,0,sku-2
|
| 638 |
+
2020-08-09,0,sku-2
|
| 639 |
+
2020-08-16,0,sku-2
|
| 640 |
+
2020-08-23,55,sku-2
|
| 641 |
+
2020-08-30,10,sku-2
|
| 642 |
+
2020-09-06,15,sku-2
|
| 643 |
+
2020-09-13,10,sku-2
|
| 644 |
+
2020-09-20,20,sku-2
|
| 645 |
+
2020-09-27,0,sku-2
|
| 646 |
+
2020-10-04,0,sku-2
|
| 647 |
+
2020-10-11,20,sku-2
|
| 648 |
+
2020-10-18,10,sku-2
|
| 649 |
+
2020-10-25,50,sku-2
|
| 650 |
+
2020-11-01,0,sku-2
|
| 651 |
+
2020-11-08,0,sku-2
|
| 652 |
+
2020-11-15,20,sku-2
|
| 653 |
+
2020-11-22,20,sku-2
|
| 654 |
+
2020-11-29,20,sku-2
|
| 655 |
+
2020-12-06,0,sku-2
|
| 656 |
+
2020-12-13,0,sku-2
|
| 657 |
+
2020-12-20,20,sku-2
|
| 658 |
+
2020-12-27,0,sku-2
|
| 659 |
+
2021-01-03,0,sku-2
|
| 660 |
+
2021-01-10,0,sku-2
|
| 661 |
+
2021-01-17,100,sku-2
|
| 662 |
+
2021-01-24,0,sku-2
|
| 663 |
+
2021-01-31,100,sku-2
|
| 664 |
+
2021-02-07,0,sku-2
|
| 665 |
+
2021-02-14,0,sku-2
|
| 666 |
+
2021-02-21,0,sku-2
|
| 667 |
+
2021-02-28,0,sku-2
|
| 668 |
+
2021-03-07,0,sku-2
|
| 669 |
+
2021-03-14,20,sku-2
|
| 670 |
+
2021-03-21,3,sku-2
|
| 671 |
+
2021-03-28,55,sku-2
|
| 672 |
+
2021-04-04,0,sku-2
|
| 673 |
+
2021-04-11,100,sku-2
|
| 674 |
+
2021-04-18,0,sku-2
|
| 675 |
+
2021-04-25,10,sku-2
|
| 676 |
+
2021-05-02,40,sku-2
|
| 677 |
+
2021-05-09,0,sku-2
|
| 678 |
+
2021-05-16,0,sku-2
|
| 679 |
+
2021-05-23,0,sku-2
|
| 680 |
+
2021-05-30,30,sku-2
|
| 681 |
+
2021-06-06,10,sku-2
|
| 682 |
+
2021-06-13,5,sku-2
|
| 683 |
+
2021-06-20,10,sku-2
|
| 684 |
+
2021-06-27,30,sku-2
|
| 685 |
+
2021-07-04,0,sku-2
|
| 686 |
+
2021-07-11,10,sku-2
|
| 687 |
+
2021-07-18,30,sku-2
|
| 688 |
+
2021-07-25,0,sku-2
|
| 689 |
+
2021-08-01,0,sku-2
|
| 690 |
+
2021-08-08,0,sku-2
|
| 691 |
+
2021-08-15,0,sku-2
|
| 692 |
+
2021-08-22,35,sku-2
|
| 693 |
+
2021-08-29,10,sku-2
|
| 694 |
+
2021-09-05,0,sku-2
|
| 695 |
+
2021-09-12,50,sku-2
|
| 696 |
+
2021-09-19,0,sku-2
|
| 697 |
+
2021-09-26,10,sku-2
|
| 698 |
+
2021-10-03,0,sku-2
|
| 699 |
+
2021-10-10,15,sku-2
|
| 700 |
+
2021-10-17,20,sku-2
|
| 701 |
+
2021-10-24,20,sku-2
|
| 702 |
+
2021-10-31,45,sku-2
|
| 703 |
+
2021-11-07,55,sku-2
|
| 704 |
+
2021-11-14,27,sku-2
|
| 705 |
+
2021-11-21,16,sku-2
|
| 706 |
+
2021-11-28,18,sku-2
|
| 707 |
+
2021-12-05,0,sku-2
|
| 708 |
+
2021-12-12,0,sku-2
|
| 709 |
+
2021-12-19,15,sku-2
|
| 710 |
+
2021-12-26,0,sku-2
|
| 711 |
+
2022-01-02,22,sku-2
|
| 712 |
+
2022-01-09,0,sku-2
|
| 713 |
+
2022-01-16,100,sku-2
|
| 714 |
+
2022-01-23,34,sku-2
|
| 715 |
+
2022-01-30,5,sku-2
|
| 716 |
+
2022-02-06,70,sku-2
|
| 717 |
+
2022-02-13,40,sku-2
|
| 718 |
+
2022-02-20,100,sku-2
|
| 719 |
+
2022-02-27,0,sku-2
|
| 720 |
+
2022-03-06,50,sku-2
|
| 721 |
+
2022-03-13,50,sku-2
|
| 722 |
+
2022-03-20,0,sku-2
|
| 723 |
+
2022-03-27,10,sku-2
|
| 724 |
+
2022-04-03,0,sku-2
|
| 725 |
+
2022-04-10,50,sku-2
|
| 726 |
+
2022-04-17,20,sku-2
|
| 727 |
+
2022-04-24,80,sku-2
|
| 728 |
+
2022-05-01,30,sku-2
|
| 729 |
+
2022-05-08,0,sku-2
|
| 730 |
+
2022-05-15,30,sku-2
|
| 731 |
+
2022-05-22,0,sku-2
|
| 732 |
+
2022-05-29,20,sku-2
|
| 733 |
+
2022-06-05,50,sku-2
|
| 734 |
+
2022-06-12,0,sku-2
|
| 735 |
+
2022-06-19,44,sku-2
|
| 736 |
+
2022-06-26,50,sku-2
|
| 737 |
+
2022-07-03,0,sku-2
|
| 738 |
+
2022-07-10,30,sku-2
|
| 739 |
+
2022-07-17,30,sku-2
|
| 740 |
+
2022-07-24,6,sku-2
|
| 741 |
+
2022-07-31,35,sku-2
|
| 742 |
+
2022-08-07,50,sku-2
|
| 743 |
+
2022-08-14,60,sku-2
|
| 744 |
+
2022-08-21,0,sku-2
|
| 745 |
+
2022-08-28,30,sku-2
|
| 746 |
+
2022-09-04,70,sku-2
|
| 747 |
+
2022-09-11,100,sku-2
|
| 748 |
+
2022-09-18,0,sku-2
|
| 749 |
+
2022-09-25,0,sku-2
|
| 750 |
+
2022-10-02,4,sku-2
|
| 751 |
+
2022-10-09,0,sku-2
|
| 752 |
+
2022-10-16,0,sku-2
|
| 753 |
+
2022-10-23,0,sku-2
|
| 754 |
+
2022-10-30,50,sku-2
|
| 755 |
+
2022-11-06,30,sku-2
|
| 756 |
+
2022-11-13,0,sku-2
|
| 757 |
+
2022-11-20,70,sku-2
|
| 758 |
+
2022-11-27,100,sku-2
|
| 759 |
+
2022-12-04,50,sku-2
|
| 760 |
+
2018-05-06,1,sku-3
|
| 761 |
+
2018-05-13,4,sku-3
|
| 762 |
+
2018-05-20,5,sku-3
|
| 763 |
+
2018-05-27,5,sku-3
|
| 764 |
+
2018-06-03,1,sku-3
|
| 765 |
+
2018-06-10,1,sku-3
|
| 766 |
+
2018-06-17,0,sku-3
|
| 767 |
+
2018-06-24,2,sku-3
|
| 768 |
+
2018-07-01,0,sku-3
|
| 769 |
+
2018-07-08,0,sku-3
|
| 770 |
+
2018-07-15,19,sku-3
|
| 771 |
+
2018-07-22,9,sku-3
|
| 772 |
+
2018-07-29,1,sku-3
|
| 773 |
+
2018-08-05,2,sku-3
|
| 774 |
+
2018-08-12,0,sku-3
|
| 775 |
+
2018-08-19,0,sku-3
|
| 776 |
+
2018-08-26,7,sku-3
|
| 777 |
+
2018-09-02,14,sku-3
|
| 778 |
+
2018-09-09,7,sku-3
|
| 779 |
+
2018-09-16,6,sku-3
|
| 780 |
+
2018-09-23,5,sku-3
|
| 781 |
+
2018-09-30,3,sku-3
|
| 782 |
+
2018-10-07,12,sku-3
|
| 783 |
+
2018-10-14,8,sku-3
|
| 784 |
+
2018-10-21,4,sku-3
|
| 785 |
+
2018-10-28,7,sku-3
|
| 786 |
+
2018-11-04,7,sku-3
|
| 787 |
+
2018-11-11,0,sku-3
|
| 788 |
+
2018-11-18,11,sku-3
|
| 789 |
+
2018-11-25,2,sku-3
|
| 790 |
+
2018-12-02,0,sku-3
|
| 791 |
+
2018-12-09,1,sku-3
|
| 792 |
+
2018-12-16,1,sku-3
|
| 793 |
+
2018-12-23,0,sku-3
|
| 794 |
+
2018-12-30,6,sku-3
|
| 795 |
+
2019-01-06,0,sku-3
|
| 796 |
+
2019-01-13,3,sku-3
|
| 797 |
+
2019-01-20,6,sku-3
|
| 798 |
+
2019-01-27,0,sku-3
|
| 799 |
+
2019-02-03,1,sku-3
|
| 800 |
+
2019-02-10,0,sku-3
|
| 801 |
+
2019-02-17,0,sku-3
|
| 802 |
+
2019-02-24,2,sku-3
|
| 803 |
+
2019-03-03,5,sku-3
|
| 804 |
+
2019-03-10,9,sku-3
|
| 805 |
+
2019-03-17,12,sku-3
|
| 806 |
+
2019-03-24,11,sku-3
|
| 807 |
+
2019-03-31,0,sku-3
|
| 808 |
+
2019-04-07,12,sku-3
|
| 809 |
+
2019-04-14,17,sku-3
|
| 810 |
+
2019-04-21,11,sku-3
|
| 811 |
+
2019-04-28,2,sku-3
|
| 812 |
+
2019-05-05,1,sku-3
|
| 813 |
+
2019-05-12,0,sku-3
|
| 814 |
+
2019-05-19,7,sku-3
|
| 815 |
+
2019-05-26,26,sku-3
|
| 816 |
+
2019-06-02,1,sku-3
|
| 817 |
+
2019-06-09,0,sku-3
|
| 818 |
+
2019-06-16,0,sku-3
|
| 819 |
+
2019-06-23,7,sku-3
|
| 820 |
+
2019-06-30,11,sku-3
|
| 821 |
+
2019-07-07,7,sku-3
|
| 822 |
+
2019-07-14,10,sku-3
|
| 823 |
+
2019-07-21,0,sku-3
|
| 824 |
+
2019-07-28,0,sku-3
|
| 825 |
+
2019-08-04,16,sku-3
|
| 826 |
+
2019-08-11,5,sku-3
|
| 827 |
+
2019-08-18,15,sku-3
|
| 828 |
+
2019-08-25,4,sku-3
|
| 829 |
+
2019-09-01,1,sku-3
|
| 830 |
+
2019-09-08,0,sku-3
|
| 831 |
+
2019-09-15,5,sku-3
|
| 832 |
+
2019-09-22,3,sku-3
|
| 833 |
+
2019-09-29,0,sku-3
|
| 834 |
+
2019-10-06,10,sku-3
|
| 835 |
+
2019-10-13,0,sku-3
|
| 836 |
+
2019-10-20,0,sku-3
|
| 837 |
+
2019-10-27,0,sku-3
|
| 838 |
+
2019-11-03,0,sku-3
|
| 839 |
+
2019-11-10,0,sku-3
|
| 840 |
+
2019-11-17,2,sku-3
|
| 841 |
+
2019-11-24,0,sku-3
|
| 842 |
+
2019-12-01,19,sku-3
|
| 843 |
+
2019-12-08,1,sku-3
|
| 844 |
+
2019-12-15,5,sku-3
|
| 845 |
+
2019-12-22,5,sku-3
|
| 846 |
+
2019-12-29,0,sku-3
|
| 847 |
+
2020-01-05,0,sku-3
|
| 848 |
+
2020-01-12,0,sku-3
|
| 849 |
+
2020-01-19,0,sku-3
|
| 850 |
+
2020-01-26,0,sku-3
|
| 851 |
+
2020-02-02,3,sku-3
|
| 852 |
+
2020-02-09,12,sku-3
|
| 853 |
+
2020-02-16,0,sku-3
|
| 854 |
+
2020-02-23,5,sku-3
|
| 855 |
+
2020-03-01,10,sku-3
|
| 856 |
+
2020-03-08,5,sku-3
|
| 857 |
+
2020-03-15,11,sku-3
|
| 858 |
+
2020-03-22,12,sku-3
|
| 859 |
+
2020-03-29,0,sku-3
|
| 860 |
+
2020-04-05,6,sku-3
|
| 861 |
+
2020-04-12,0,sku-3
|
| 862 |
+
2020-04-19,0,sku-3
|
| 863 |
+
2020-04-26,0,sku-3
|
| 864 |
+
2020-05-03,0,sku-3
|
| 865 |
+
2020-05-10,0,sku-3
|
| 866 |
+
2020-05-17,0,sku-3
|
| 867 |
+
2020-05-24,0,sku-3
|
| 868 |
+
2020-05-31,0,sku-3
|
| 869 |
+
2020-06-07,11,sku-3
|
| 870 |
+
2020-06-14,6,sku-3
|
| 871 |
+
2020-06-21,8,sku-3
|
| 872 |
+
2020-06-28,0,sku-3
|
| 873 |
+
2020-07-05,0,sku-3
|
| 874 |
+
2020-07-12,41,sku-3
|
| 875 |
+
2020-07-19,0,sku-3
|
| 876 |
+
2020-07-26,4,sku-3
|
| 877 |
+
2020-08-02,0,sku-3
|
| 878 |
+
2020-08-09,0,sku-3
|
| 879 |
+
2020-08-16,0,sku-3
|
| 880 |
+
2020-08-23,47,sku-3
|
| 881 |
+
2020-08-30,3,sku-3
|
| 882 |
+
2020-09-06,31,sku-3
|
| 883 |
+
2020-09-13,0,sku-3
|
| 884 |
+
2020-09-20,2,sku-3
|
| 885 |
+
2020-09-27,0,sku-3
|
| 886 |
+
2020-10-04,0,sku-3
|
| 887 |
+
2020-10-11,6,sku-3
|
| 888 |
+
2020-10-18,9,sku-3
|
| 889 |
+
2020-10-25,8,sku-3
|
| 890 |
+
2020-11-01,4,sku-3
|
| 891 |
+
2020-11-08,2,sku-3
|
| 892 |
+
2020-11-15,30,sku-3
|
| 893 |
+
2020-11-22,60,sku-3
|
| 894 |
+
2020-11-29,68,sku-3
|
| 895 |
+
2020-12-06,0,sku-3
|
| 896 |
+
2020-12-13,0,sku-3
|
| 897 |
+
2020-12-20,0,sku-3
|
| 898 |
+
2020-12-27,0,sku-3
|
| 899 |
+
2021-01-03,0,sku-3
|
| 900 |
+
2021-01-10,0,sku-3
|
| 901 |
+
2021-01-17,0,sku-3
|
| 902 |
+
2021-01-24,0,sku-3
|
| 903 |
+
2021-01-31,0,sku-3
|
| 904 |
+
2021-02-07,6,sku-3
|
| 905 |
+
2021-02-14,6,sku-3
|
| 906 |
+
2021-02-21,15,sku-3
|
| 907 |
+
2021-02-28,30,sku-3
|
| 908 |
+
2021-03-07,0,sku-3
|
| 909 |
+
2021-03-14,5,sku-3
|
| 910 |
+
2021-03-21,20,sku-3
|
| 911 |
+
2021-03-28,0,sku-3
|
| 912 |
+
2021-04-04,0,sku-3
|
| 913 |
+
2021-04-11,0,sku-3
|
| 914 |
+
2021-04-18,0,sku-3
|
| 915 |
+
2021-04-25,10,sku-3
|
| 916 |
+
2021-05-02,10,sku-3
|
| 917 |
+
2021-05-09,0,sku-3
|
| 918 |
+
2021-05-16,0,sku-3
|
| 919 |
+
2021-05-23,0,sku-3
|
| 920 |
+
2021-05-30,0,sku-3
|
| 921 |
+
2021-06-06,0,sku-3
|
| 922 |
+
2021-06-13,0,sku-3
|
| 923 |
+
2021-06-20,0,sku-3
|
| 924 |
+
2021-06-27,0,sku-3
|
| 925 |
+
2021-07-04,0,sku-3
|
| 926 |
+
2021-07-11,0,sku-3
|
| 927 |
+
2021-07-18,2,sku-3
|
| 928 |
+
2021-07-25,0,sku-3
|
| 929 |
+
2021-08-01,0,sku-3
|
| 930 |
+
2021-08-08,0,sku-3
|
| 931 |
+
2021-08-15,0,sku-3
|
| 932 |
+
2021-08-22,0,sku-3
|
| 933 |
+
2021-08-29,0,sku-3
|
| 934 |
+
2021-09-05,0,sku-3
|
| 935 |
+
2021-09-12,5,sku-3
|
| 936 |
+
2021-09-19,0,sku-3
|
| 937 |
+
2021-09-26,0,sku-3
|
| 938 |
+
2021-10-03,0,sku-3
|
| 939 |
+
2021-10-10,0,sku-3
|
| 940 |
+
2021-10-17,10,sku-3
|
| 941 |
+
2021-10-24,3,sku-3
|
| 942 |
+
2021-10-31,2,sku-3
|
| 943 |
+
2021-11-07,0,sku-3
|
| 944 |
+
2021-11-14,0,sku-3
|
| 945 |
+
2021-11-21,15,sku-3
|
| 946 |
+
2021-11-28,7,sku-3
|
| 947 |
+
2021-12-05,17,sku-3
|
| 948 |
+
2021-12-12,0,sku-3
|
| 949 |
+
2021-12-19,0,sku-3
|
| 950 |
+
2021-12-26,0,sku-3
|
| 951 |
+
2022-01-02,5,sku-3
|
| 952 |
+
2022-01-09,10,sku-3
|
| 953 |
+
2022-01-16,0,sku-3
|
| 954 |
+
2022-01-23,5,sku-3
|
| 955 |
+
2022-01-30,10,sku-3
|
| 956 |
+
2022-02-06,5,sku-3
|
| 957 |
+
2022-02-13,25,sku-3
|
| 958 |
+
2022-02-20,0,sku-3
|
| 959 |
+
2022-02-27,0,sku-3
|
| 960 |
+
2022-03-06,0,sku-3
|
| 961 |
+
2022-03-13,2,sku-3
|
| 962 |
+
2022-03-20,45,sku-3
|
| 963 |
+
2022-03-27,25,sku-3
|
| 964 |
+
2022-04-03,0,sku-3
|
| 965 |
+
2022-04-10,0,sku-3
|
| 966 |
+
2022-04-17,10,sku-3
|
| 967 |
+
2022-04-24,3,sku-3
|
| 968 |
+
2022-05-01,9,sku-3
|
| 969 |
+
2022-05-08,0,sku-3
|
| 970 |
+
2022-05-15,3,sku-3
|
| 971 |
+
2022-05-22,5,sku-3
|
| 972 |
+
2022-05-29,30,sku-3
|
| 973 |
+
2022-06-05,0,sku-3
|
| 974 |
+
2022-06-12,45,sku-3
|
| 975 |
+
2022-06-19,32,sku-3
|
| 976 |
+
2022-06-26,10,sku-3
|
| 977 |
+
2022-07-03,0,sku-3
|
| 978 |
+
2022-07-10,10,sku-3
|
| 979 |
+
2022-07-17,30,sku-3
|
| 980 |
+
2022-07-24,25,sku-3
|
| 981 |
+
2022-07-31,7,sku-3
|
| 982 |
+
2022-08-07,20,sku-3
|
| 983 |
+
2022-08-14,32,sku-3
|
| 984 |
+
2022-08-21,25,sku-3
|
| 985 |
+
2022-08-28,0,sku-3
|
| 986 |
+
2022-09-04,3,sku-3
|
| 987 |
+
2022-09-11,0,sku-3
|
| 988 |
+
2022-09-18,0,sku-3
|
| 989 |
+
2022-09-25,25,sku-3
|
| 990 |
+
2022-10-02,0,sku-3
|
| 991 |
+
2022-10-09,0,sku-3
|
| 992 |
+
2022-10-16,0,sku-3
|
| 993 |
+
2022-10-23,0,sku-3
|
| 994 |
+
2022-10-30,0,sku-3
|
| 995 |
+
2022-11-06,0,sku-3
|
| 996 |
+
2022-11-13,0,sku-3
|
| 997 |
+
2022-11-20,0,sku-3
|
| 998 |
+
2022-11-27,0,sku-3
|
| 999 |
+
2022-12-04,0,sku-3
|
| 1000 |
+
2022-12-11,0,sku-3
|
| 1001 |
+
2022-12-18,0,sku-3
|
| 1002 |
+
2022-12-25,0,sku-3
|
| 1003 |
+
2023-01-01,0,sku-3
|
| 1004 |
+
2023-01-08,0,sku-3
|
| 1005 |
+
2023-01-15,0,sku-3
|
| 1006 |
+
2023-01-22,0,sku-3
|
| 1007 |
+
2023-01-29,0,sku-3
|
| 1008 |
+
2023-02-05,0,sku-3
|
| 1009 |
+
2023-02-12,0,sku-3
|
| 1010 |
+
2023-02-19,0,sku-3
|
| 1011 |
+
2023-02-26,0,sku-3
|
| 1012 |
+
2023-03-05,0,sku-3
|
| 1013 |
+
2023-03-12,0,sku-3
|
| 1014 |
+
2023-03-19,0,sku-3
|
| 1015 |
+
2023-03-26,0,sku-3
|
| 1016 |
+
2023-04-02,0,sku-3
|
| 1017 |
+
2023-04-09,0,sku-3
|
| 1018 |
+
2023-04-16,10,sku-3
|
| 1019 |
+
2023-04-23,12,sku-3
|
| 1020 |
+
2018-05-06,2,sku-4
|
| 1021 |
+
2018-05-13,12,sku-4
|
| 1022 |
+
2018-05-20,6,sku-4
|
| 1023 |
+
2018-05-27,9,sku-4
|
| 1024 |
+
2018-06-03,5,sku-4
|
| 1025 |
+
2018-06-10,2,sku-4
|
| 1026 |
+
2018-06-17,0,sku-4
|
| 1027 |
+
2018-06-24,3,sku-4
|
| 1028 |
+
2018-07-01,1,sku-4
|
| 1029 |
+
2018-07-08,6,sku-4
|
| 1030 |
+
2018-07-15,9,sku-4
|
| 1031 |
+
2018-07-22,9,sku-4
|
| 1032 |
+
2018-07-29,9,sku-4
|
| 1033 |
+
2018-08-05,8,sku-4
|
| 1034 |
+
2018-08-12,1,sku-4
|
| 1035 |
+
2018-08-19,0,sku-4
|
| 1036 |
+
2018-08-26,2,sku-4
|
| 1037 |
+
2018-09-02,11,sku-4
|
| 1038 |
+
2018-09-09,9,sku-4
|
| 1039 |
+
2018-09-16,4,sku-4
|
| 1040 |
+
2018-09-23,24,sku-4
|
| 1041 |
+
2018-09-30,13,sku-4
|
| 1042 |
+
2018-10-07,0,sku-4
|
| 1043 |
+
2018-10-14,0,sku-4
|
| 1044 |
+
2018-10-21,0,sku-4
|
| 1045 |
+
2018-10-28,6,sku-4
|
| 1046 |
+
2018-11-04,25,sku-4
|
| 1047 |
+
2018-11-11,0,sku-4
|
| 1048 |
+
2018-11-18,12,sku-4
|
| 1049 |
+
2018-11-25,5,sku-4
|
| 1050 |
+
2018-12-02,11,sku-4
|
| 1051 |
+
2018-12-09,4,sku-4
|
| 1052 |
+
2018-12-16,2,sku-4
|
| 1053 |
+
2018-12-23,4,sku-4
|
| 1054 |
+
2018-12-30,0,sku-4
|
| 1055 |
+
2019-01-06,0,sku-4
|
| 1056 |
+
2019-01-13,4,sku-4
|
| 1057 |
+
2019-01-20,9,sku-4
|
| 1058 |
+
2019-01-27,0,sku-4
|
| 1059 |
+
2019-02-03,15,sku-4
|
| 1060 |
+
2019-02-10,4,sku-4
|
| 1061 |
+
2019-02-17,0,sku-4
|
| 1062 |
+
2019-02-24,24,sku-4
|
| 1063 |
+
2019-03-03,3,sku-4
|
| 1064 |
+
2019-03-10,1,sku-4
|
| 1065 |
+
2019-03-17,5,sku-4
|
| 1066 |
+
2019-03-24,13,sku-4
|
| 1067 |
+
2019-03-31,20,sku-4
|
| 1068 |
+
2019-04-07,0,sku-4
|
| 1069 |
+
2019-04-14,0,sku-4
|
| 1070 |
+
2019-04-21,0,sku-4
|
| 1071 |
+
2019-04-28,0,sku-4
|
| 1072 |
+
2019-05-05,0,sku-4
|
| 1073 |
+
2019-05-12,0,sku-4
|
| 1074 |
+
2019-05-19,2,sku-4
|
| 1075 |
+
2019-05-26,8,sku-4
|
| 1076 |
+
2019-06-02,0,sku-4
|
| 1077 |
+
2019-06-09,0,sku-4
|
| 1078 |
+
2019-06-16,0,sku-4
|
| 1079 |
+
2019-06-23,0,sku-4
|
| 1080 |
+
2019-06-30,2,sku-4
|
| 1081 |
+
2019-07-07,8,sku-4
|
| 1082 |
+
2019-07-14,2,sku-4
|
| 1083 |
+
2019-07-21,10,sku-4
|
| 1084 |
+
2019-07-28,0,sku-4
|
| 1085 |
+
2019-08-04,12,sku-4
|
| 1086 |
+
2019-08-11,2,sku-4
|
| 1087 |
+
2019-08-18,5,sku-4
|
| 1088 |
+
2019-08-25,0,sku-4
|
| 1089 |
+
2019-09-01,7,sku-4
|
| 1090 |
+
2019-09-08,13,sku-4
|
| 1091 |
+
2019-09-15,0,sku-4
|
| 1092 |
+
2019-09-22,0,sku-4
|
| 1093 |
+
2019-09-29,0,sku-4
|
| 1094 |
+
2019-10-06,6,sku-4
|
| 1095 |
+
2019-10-13,2,sku-4
|
| 1096 |
+
2019-10-20,10,sku-4
|
| 1097 |
+
2019-10-27,0,sku-4
|
| 1098 |
+
2019-11-03,27,sku-4
|
| 1099 |
+
2019-11-10,0,sku-4
|
| 1100 |
+
2019-11-17,12,sku-4
|
| 1101 |
+
2019-11-24,9,sku-4
|
| 1102 |
+
2019-12-01,22,sku-4
|
| 1103 |
+
2019-12-08,4,sku-4
|
| 1104 |
+
2019-12-15,0,sku-4
|
| 1105 |
+
2019-12-22,0,sku-4
|
| 1106 |
+
2019-12-29,22,sku-4
|
| 1107 |
+
2020-01-05,0,sku-4
|
| 1108 |
+
2020-01-12,5,sku-4
|
| 1109 |
+
2020-01-19,4,sku-4
|
| 1110 |
+
2020-01-26,9,sku-4
|
| 1111 |
+
2020-02-02,10,sku-4
|
| 1112 |
+
2020-02-09,8,sku-4
|
| 1113 |
+
2020-02-16,5,sku-4
|
| 1114 |
+
2020-02-23,0,sku-4
|
| 1115 |
+
2020-03-01,30,sku-4
|
| 1116 |
+
2020-03-08,0,sku-4
|
| 1117 |
+
2020-03-15,10,sku-4
|
| 1118 |
+
2020-03-22,8,sku-4
|
| 1119 |
+
2020-03-29,16,sku-4
|
| 1120 |
+
2020-04-05,10,sku-4
|
| 1121 |
+
2020-04-12,0,sku-4
|
| 1122 |
+
2020-04-19,3,sku-4
|
| 1123 |
+
2020-04-26,10,sku-4
|
| 1124 |
+
2020-05-03,0,sku-4
|
| 1125 |
+
2020-05-10,0,sku-4
|
| 1126 |
+
2020-05-17,4,sku-4
|
| 1127 |
+
2020-05-24,2,sku-4
|
| 1128 |
+
2020-05-31,4,sku-4
|
| 1129 |
+
2020-06-07,11,sku-4
|
| 1130 |
+
2020-06-14,10,sku-4
|
| 1131 |
+
2020-06-21,5,sku-4
|
| 1132 |
+
2020-06-28,10,sku-4
|
| 1133 |
+
2020-07-05,2,sku-4
|
| 1134 |
+
2020-07-12,11,sku-4
|
| 1135 |
+
2020-07-19,3,sku-4
|
| 1136 |
+
2020-07-26,44,sku-4
|
| 1137 |
+
2020-08-02,0,sku-4
|
| 1138 |
+
2020-08-09,0,sku-4
|
| 1139 |
+
2020-08-16,0,sku-4
|
| 1140 |
+
2020-08-23,140,sku-4
|
| 1141 |
+
2020-08-30,40,sku-4
|
| 1142 |
+
2020-09-06,0,sku-4
|
| 1143 |
+
2020-09-13,0,sku-4
|
| 1144 |
+
2020-09-20,24,sku-4
|
| 1145 |
+
2020-09-27,12,sku-4
|
| 1146 |
+
2020-10-04,2,sku-4
|
| 1147 |
+
2020-10-11,3,sku-4
|
| 1148 |
+
2020-10-18,13,sku-4
|
| 1149 |
+
2020-10-25,13,sku-4
|
| 1150 |
+
2020-11-01,14,sku-4
|
| 1151 |
+
2020-11-08,3,sku-4
|
| 1152 |
+
2020-11-15,10,sku-4
|
| 1153 |
+
2020-11-22,20,sku-4
|
| 1154 |
+
2020-11-29,0,sku-4
|
| 1155 |
+
2020-12-06,0,sku-4
|
| 1156 |
+
2020-12-13,0,sku-4
|
| 1157 |
+
2020-12-20,0,sku-4
|
| 1158 |
+
2020-12-27,0,sku-4
|
| 1159 |
+
2021-01-03,0,sku-4
|
| 1160 |
+
2021-01-10,0,sku-4
|
| 1161 |
+
2021-01-17,0,sku-4
|
| 1162 |
+
2021-01-24,0,sku-4
|
| 1163 |
+
2021-01-31,0,sku-4
|
| 1164 |
+
2021-02-07,0,sku-4
|
| 1165 |
+
2021-02-14,60,sku-4
|
| 1166 |
+
2021-02-21,0,sku-4
|
| 1167 |
+
2021-02-28,0,sku-4
|
| 1168 |
+
2021-03-07,0,sku-4
|
| 1169 |
+
2021-03-14,0,sku-4
|
| 1170 |
+
2021-03-21,10,sku-4
|
| 1171 |
+
2021-03-28,0,sku-4
|
| 1172 |
+
2021-04-04,0,sku-4
|
| 1173 |
+
2021-04-11,0,sku-4
|
| 1174 |
+
2021-04-18,0,sku-4
|
| 1175 |
+
2021-04-25,30,sku-4
|
| 1176 |
+
2021-05-02,9,sku-4
|
| 1177 |
+
2021-05-09,7,sku-4
|
| 1178 |
+
2021-05-16,0,sku-4
|
| 1179 |
+
2021-05-23,3,sku-4
|
| 1180 |
+
2021-05-30,5,sku-4
|
| 1181 |
+
2021-06-06,3,sku-4
|
| 1182 |
+
2021-06-13,15,sku-4
|
| 1183 |
+
2021-06-20,10,sku-4
|
| 1184 |
+
2021-06-27,32,sku-4
|
| 1185 |
+
2021-07-04,0,sku-4
|
| 1186 |
+
2021-07-11,10,sku-4
|
| 1187 |
+
2021-07-18,10,sku-4
|
| 1188 |
+
2021-07-25,0,sku-4
|
| 1189 |
+
2021-08-01,0,sku-4
|
| 1190 |
+
2021-08-08,0,sku-4
|
| 1191 |
+
2021-08-15,0,sku-4
|
| 1192 |
+
2021-08-22,0,sku-4
|
| 1193 |
+
2021-08-29,0,sku-4
|
| 1194 |
+
2021-09-05,0,sku-4
|
| 1195 |
+
2021-09-12,15,sku-4
|
| 1196 |
+
2021-09-19,10,sku-4
|
| 1197 |
+
2021-09-26,5,sku-4
|
| 1198 |
+
2021-10-03,0,sku-4
|
| 1199 |
+
2021-10-10,24,sku-4
|
| 1200 |
+
2021-10-17,18,sku-4
|
| 1201 |
+
2021-10-24,6,sku-4
|
| 1202 |
+
2021-10-31,7,sku-4
|
| 1203 |
+
2021-11-07,8,sku-4
|
| 1204 |
+
2021-11-14,25,sku-4
|
| 1205 |
+
2021-11-21,10,sku-4
|
| 1206 |
+
2021-11-28,10,sku-4
|
| 1207 |
+
2021-12-05,2,sku-4
|
| 1208 |
+
2021-12-12,2,sku-4
|
| 1209 |
+
2021-12-19,0,sku-4
|
| 1210 |
+
2021-12-26,0,sku-4
|
| 1211 |
+
2022-01-02,2,sku-4
|
| 1212 |
+
2022-01-09,4,sku-4
|
| 1213 |
+
2022-01-16,3,sku-4
|
| 1214 |
+
2022-01-23,10,sku-4
|
| 1215 |
+
2022-01-30,10,sku-4
|
| 1216 |
+
2022-02-06,0,sku-4
|
| 1217 |
+
2022-02-13,20,sku-4
|
| 1218 |
+
2022-02-20,25,sku-4
|
| 1219 |
+
2022-02-27,10,sku-4
|
| 1220 |
+
2022-03-06,29,sku-4
|
| 1221 |
+
2022-03-13,10,sku-4
|
| 1222 |
+
2022-03-20,7,sku-4
|
| 1223 |
+
2022-03-27,24,sku-4
|
| 1224 |
+
2022-04-03,3,sku-4
|
| 1225 |
+
2022-04-10,10,sku-4
|
| 1226 |
+
2022-04-17,7,sku-4
|
| 1227 |
+
2022-04-24,2,sku-4
|
| 1228 |
+
2022-05-01,0,sku-4
|
| 1229 |
+
2022-05-08,0,sku-4
|
| 1230 |
+
2022-05-15,10,sku-4
|
| 1231 |
+
2022-05-22,7,sku-4
|
| 1232 |
+
2022-05-29,9,sku-4
|
| 1233 |
+
2022-06-05,6,sku-4
|
| 1234 |
+
2022-06-12,5,sku-4
|
| 1235 |
+
2022-06-19,35,sku-4
|
| 1236 |
+
2022-06-26,20,sku-4
|
| 1237 |
+
2022-07-03,0,sku-4
|
| 1238 |
+
2022-07-10,5,sku-4
|
| 1239 |
+
2022-07-17,5,sku-4
|
| 1240 |
+
2022-07-24,9,sku-4
|
| 1241 |
+
2022-07-31,14,sku-4
|
| 1242 |
+
2022-08-07,20,sku-4
|
| 1243 |
+
2022-08-14,10,sku-4
|
| 1244 |
+
2022-08-21,10,sku-4
|
| 1245 |
+
2022-08-28,1,sku-4
|
| 1246 |
+
2022-09-04,15,sku-4
|
| 1247 |
+
2022-09-11,22,sku-4
|
| 1248 |
+
2022-09-18,10,sku-4
|
| 1249 |
+
2022-09-25,10,sku-4
|
| 1250 |
+
2022-10-02,20,sku-4
|
| 1251 |
+
2022-10-09,0,sku-4
|
| 1252 |
+
2022-10-16,0,sku-4
|
| 1253 |
+
2022-10-23,0,sku-4
|
| 1254 |
+
2022-10-30,15,sku-4
|
| 1255 |
+
2022-11-06,10,sku-4
|
| 1256 |
+
2022-11-13,0,sku-4
|
| 1257 |
+
2022-11-20,10,sku-4
|
| 1258 |
+
2022-11-27,10,sku-4
|
| 1259 |
+
2022-12-04,0,sku-4
|
| 1260 |
+
2022-12-11,0,sku-4
|
| 1261 |
+
2022-12-18,0,sku-4
|
| 1262 |
+
2022-12-25,7,sku-4
|
| 1263 |
+
2023-01-01,10,sku-4
|
| 1264 |
+
2023-01-08,10,sku-4
|
| 1265 |
+
2023-01-15,0,sku-4
|
| 1266 |
+
2023-01-22,5,sku-4
|
| 1267 |
+
2023-01-29,0,sku-4
|
| 1268 |
+
2023-02-05,7,sku-4
|
| 1269 |
+
2023-02-12,2,sku-4
|
| 1270 |
+
2023-02-19,0,sku-4
|
| 1271 |
+
2023-02-26,20,sku-4
|
| 1272 |
+
2023-03-05,13,sku-4
|
| 1273 |
+
2023-03-12,10,sku-4
|
| 1274 |
+
2023-03-19,0,sku-4
|
| 1275 |
+
2023-03-26,0,sku-4
|
| 1276 |
+
2023-04-02,10,sku-4
|
| 1277 |
+
2023-04-09,8,sku-4
|
| 1278 |
+
2023-04-16,10,sku-4
|
| 1279 |
+
2023-04-23,5,sku-4
|
| 1280 |
+
2018-05-06,14,sku-5
|
| 1281 |
+
2018-05-13,0,sku-5
|
| 1282 |
+
2018-05-20,0,sku-5
|
| 1283 |
+
2018-05-27,12,sku-5
|
| 1284 |
+
2018-06-03,8,sku-5
|
| 1285 |
+
2018-06-10,8,sku-5
|
| 1286 |
+
2018-06-17,0,sku-5
|
| 1287 |
+
2018-06-24,0,sku-5
|
| 1288 |
+
2018-07-01,0,sku-5
|
| 1289 |
+
2018-07-08,0,sku-5
|
| 1290 |
+
2018-07-15,0,sku-5
|
| 1291 |
+
2018-07-22,20,sku-5
|
| 1292 |
+
2018-07-29,33,sku-5
|
| 1293 |
+
2018-08-05,17,sku-5
|
| 1294 |
+
2018-08-12,9,sku-5
|
| 1295 |
+
2018-08-19,9,sku-5
|
| 1296 |
+
2018-08-26,2,sku-5
|
| 1297 |
+
2018-09-02,22,sku-5
|
| 1298 |
+
2018-09-09,61,sku-5
|
| 1299 |
+
2018-09-16,6,sku-5
|
| 1300 |
+
2018-09-23,6,sku-5
|
| 1301 |
+
2018-09-30,20,sku-5
|
| 1302 |
+
2018-10-07,17,sku-5
|
| 1303 |
+
2018-10-14,40,sku-5
|
| 1304 |
+
2018-10-21,0,sku-5
|
| 1305 |
+
2018-10-28,5,sku-5
|
| 1306 |
+
2018-11-04,0,sku-5
|
| 1307 |
+
2018-11-11,0,sku-5
|
| 1308 |
+
2018-11-18,58,sku-5
|
| 1309 |
+
2018-11-25,12,sku-5
|
| 1310 |
+
2018-12-02,60,sku-5
|
| 1311 |
+
2018-12-09,3,sku-5
|
| 1312 |
+
2018-12-16,28,sku-5
|
| 1313 |
+
2018-12-23,37,sku-5
|
| 1314 |
+
2018-12-30,0,sku-5
|
| 1315 |
+
2019-01-06,0,sku-5
|
| 1316 |
+
2019-01-13,3,sku-5
|
| 1317 |
+
2019-01-20,5,sku-5
|
| 1318 |
+
2019-01-27,15,sku-5
|
| 1319 |
+
2019-02-03,41,sku-5
|
| 1320 |
+
2019-02-10,0,sku-5
|
| 1321 |
+
2019-02-17,0,sku-5
|
| 1322 |
+
2019-02-24,0,sku-5
|
| 1323 |
+
2019-03-03,50,sku-5
|
| 1324 |
+
2019-03-10,8,sku-5
|
| 1325 |
+
2019-03-17,10,sku-5
|
| 1326 |
+
2019-03-24,9,sku-5
|
| 1327 |
+
2019-03-31,30,sku-5
|
| 1328 |
+
2019-04-07,10,sku-5
|
| 1329 |
+
2019-04-14,0,sku-5
|
| 1330 |
+
2019-04-21,3,sku-5
|
| 1331 |
+
2019-04-28,23,sku-5
|
| 1332 |
+
2019-05-05,20,sku-5
|
| 1333 |
+
2019-05-12,0,sku-5
|
| 1334 |
+
2019-05-19,30,sku-5
|
| 1335 |
+
2019-05-26,20,sku-5
|
| 1336 |
+
2019-06-02,0,sku-5
|
| 1337 |
+
2019-06-09,0,sku-5
|
| 1338 |
+
2019-06-16,5,sku-5
|
| 1339 |
+
2019-06-23,11,sku-5
|
| 1340 |
+
2019-06-30,0,sku-5
|
| 1341 |
+
2019-07-07,0,sku-5
|
| 1342 |
+
2019-07-14,0,sku-5
|
| 1343 |
+
2019-07-21,0,sku-5
|
| 1344 |
+
2019-07-28,40,sku-5
|
| 1345 |
+
2019-08-04,0,sku-5
|
| 1346 |
+
2019-08-11,5,sku-5
|
| 1347 |
+
2019-08-18,0,sku-5
|
| 1348 |
+
2019-08-25,12,sku-5
|
| 1349 |
+
2019-09-01,1,sku-5
|
| 1350 |
+
2019-09-08,9,sku-5
|
| 1351 |
+
2019-09-15,10,sku-5
|
| 1352 |
+
2019-09-22,0,sku-5
|
| 1353 |
+
2019-09-29,0,sku-5
|
| 1354 |
+
2019-10-06,23,sku-5
|
| 1355 |
+
2019-10-13,15,sku-5
|
| 1356 |
+
2019-10-20,13,sku-5
|
| 1357 |
+
2019-10-27,20,sku-5
|
| 1358 |
+
2019-11-03,14,sku-5
|
| 1359 |
+
2019-11-10,2,sku-5
|
| 1360 |
+
2019-11-17,8,sku-5
|
| 1361 |
+
2019-11-24,11,sku-5
|
| 1362 |
+
2019-12-01,0,sku-5
|
| 1363 |
+
2019-12-08,30,sku-5
|
| 1364 |
+
2019-12-15,9,sku-5
|
| 1365 |
+
2019-12-22,9,sku-5
|
| 1366 |
+
2019-12-29,29,sku-5
|
| 1367 |
+
2020-01-05,0,sku-5
|
| 1368 |
+
2020-01-12,26,sku-5
|
| 1369 |
+
2020-01-19,10,sku-5
|
| 1370 |
+
2020-01-26,82,sku-5
|
| 1371 |
+
2020-02-02,9,sku-5
|
| 1372 |
+
2020-02-09,20,sku-5
|
| 1373 |
+
2020-02-16,70,sku-5
|
| 1374 |
+
2020-02-23,0,sku-5
|
| 1375 |
+
2020-03-01,95,sku-5
|
| 1376 |
+
2020-03-08,0,sku-5
|
| 1377 |
+
2020-03-15,0,sku-5
|
| 1378 |
+
2020-03-22,20,sku-5
|
| 1379 |
+
2020-03-29,45,sku-5
|
| 1380 |
+
2020-04-05,140,sku-5
|
| 1381 |
+
2020-04-12,0,sku-5
|
| 1382 |
+
2020-04-19,0,sku-5
|
| 1383 |
+
2020-04-26,0,sku-5
|
| 1384 |
+
2020-05-03,0,sku-5
|
| 1385 |
+
2020-05-10,0,sku-5
|
| 1386 |
+
2020-05-17,105,sku-5
|
| 1387 |
+
2020-05-24,30,sku-5
|
| 1388 |
+
2020-05-31,15,sku-5
|
| 1389 |
+
2020-06-07,20,sku-5
|
| 1390 |
+
2020-06-14,0,sku-5
|
| 1391 |
+
2020-06-21,0,sku-5
|
| 1392 |
+
2020-06-28,0,sku-5
|
| 1393 |
+
2020-07-05,15,sku-5
|
| 1394 |
+
2020-07-12,10,sku-5
|
| 1395 |
+
2020-07-19,10,sku-5
|
| 1396 |
+
2020-07-26,110,sku-5
|
| 1397 |
+
2020-08-02,0,sku-5
|
| 1398 |
+
2020-08-09,0,sku-5
|
| 1399 |
+
2020-08-16,0,sku-5
|
| 1400 |
+
2020-08-23,20,sku-5
|
| 1401 |
+
2020-08-30,0,sku-5
|
| 1402 |
+
2020-09-06,30,sku-5
|
| 1403 |
+
2020-09-13,15,sku-5
|
| 1404 |
+
2020-09-20,0,sku-5
|
| 1405 |
+
2020-09-27,0,sku-5
|
| 1406 |
+
2020-10-04,0,sku-5
|
| 1407 |
+
2020-10-11,20,sku-5
|
| 1408 |
+
2020-10-18,6,sku-5
|
| 1409 |
+
2020-10-25,0,sku-5
|
| 1410 |
+
2020-11-01,0,sku-5
|
| 1411 |
+
2020-11-08,0,sku-5
|
| 1412 |
+
2020-11-15,13,sku-5
|
| 1413 |
+
2020-11-22,2,sku-5
|
| 1414 |
+
2020-11-29,0,sku-5
|
| 1415 |
+
2020-12-06,0,sku-5
|
| 1416 |
+
2020-12-13,1,sku-5
|
| 1417 |
+
2020-12-20,0,sku-5
|
| 1418 |
+
2020-12-27,0,sku-5
|
| 1419 |
+
2021-01-03,0,sku-5
|
| 1420 |
+
2021-01-10,20,sku-5
|
| 1421 |
+
2021-01-17,26,sku-5
|
| 1422 |
+
2021-01-24,80,sku-5
|
| 1423 |
+
2021-01-31,0,sku-5
|
| 1424 |
+
2021-02-07,30,sku-5
|
| 1425 |
+
2021-02-14,75,sku-5
|
| 1426 |
+
2021-02-21,0,sku-5
|
| 1427 |
+
2021-02-28,0,sku-5
|
| 1428 |
+
2021-03-07,0,sku-5
|
| 1429 |
+
2021-03-14,0,sku-5
|
| 1430 |
+
2021-03-21,0,sku-5
|
| 1431 |
+
2021-03-28,0,sku-5
|
| 1432 |
+
2021-04-04,0,sku-5
|
| 1433 |
+
2021-04-11,56,sku-5
|
| 1434 |
+
2021-04-18,34,sku-5
|
| 1435 |
+
2021-04-25,10,sku-5
|
| 1436 |
+
2021-05-02,39,sku-5
|
| 1437 |
+
2021-05-09,1,sku-5
|
| 1438 |
+
2021-05-16,0,sku-5
|
| 1439 |
+
2021-05-23,11,sku-5
|
| 1440 |
+
2021-05-30,24,sku-5
|
| 1441 |
+
2021-06-06,15,sku-5
|
| 1442 |
+
2021-06-13,10,sku-5
|
| 1443 |
+
2021-06-20,10,sku-5
|
| 1444 |
+
2021-06-27,28,sku-5
|
| 1445 |
+
2021-07-04,0,sku-5
|
| 1446 |
+
2021-07-11,0,sku-5
|
| 1447 |
+
2021-07-18,0,sku-5
|
| 1448 |
+
2021-07-25,9,sku-5
|
| 1449 |
+
2021-08-01,0,sku-5
|
| 1450 |
+
2021-08-08,0,sku-5
|
| 1451 |
+
2021-08-15,0,sku-5
|
| 1452 |
+
2021-08-22,0,sku-5
|
| 1453 |
+
2021-08-29,0,sku-5
|
| 1454 |
+
2021-09-05,40,sku-5
|
| 1455 |
+
2021-09-12,10,sku-5
|
| 1456 |
+
2021-09-19,0,sku-5
|
| 1457 |
+
2021-09-26,20,sku-5
|
| 1458 |
+
2021-10-03,0,sku-5
|
| 1459 |
+
2021-10-10,25,sku-5
|
| 1460 |
+
2021-10-17,15,sku-5
|
| 1461 |
+
2021-10-24,10,sku-5
|
| 1462 |
+
2021-10-31,12,sku-5
|
| 1463 |
+
2021-11-07,70,sku-5
|
| 1464 |
+
2021-11-14,30,sku-5
|
| 1465 |
+
2021-11-21,70,sku-5
|
| 1466 |
+
2021-11-28,35,sku-5
|
| 1467 |
+
2021-12-05,0,sku-5
|
| 1468 |
+
2021-12-12,0,sku-5
|
| 1469 |
+
2021-12-19,0,sku-5
|
| 1470 |
+
2021-12-26,0,sku-5
|
| 1471 |
+
2022-01-02,20,sku-5
|
| 1472 |
+
2022-01-09,0,sku-5
|
| 1473 |
+
2022-01-16,5,sku-5
|
| 1474 |
+
2022-01-23,10,sku-5
|
| 1475 |
+
2022-01-30,25,sku-5
|
| 1476 |
+
2022-02-06,5,sku-5
|
| 1477 |
+
2022-02-13,30,sku-5
|
| 1478 |
+
2022-02-20,0,sku-5
|
| 1479 |
+
2022-02-27,42,sku-5
|
| 1480 |
+
2022-03-06,0,sku-5
|
| 1481 |
+
2022-03-13,20,sku-5
|
| 1482 |
+
2022-03-20,0,sku-5
|
| 1483 |
+
2022-03-27,10,sku-5
|
| 1484 |
+
2022-04-03,50,sku-5
|
| 1485 |
+
2022-04-10,0,sku-5
|
| 1486 |
+
2022-04-17,100,sku-5
|
| 1487 |
+
2022-04-24,0,sku-5
|
| 1488 |
+
2022-05-01,0,sku-5
|
| 1489 |
+
2022-05-08,0,sku-5
|
| 1490 |
+
2022-05-15,15,sku-5
|
| 1491 |
+
2022-05-22,15,sku-5
|
| 1492 |
+
2022-05-29,10,sku-5
|
| 1493 |
+
2022-06-05,10,sku-5
|
| 1494 |
+
2022-06-12,20,sku-5
|
| 1495 |
+
2022-06-19,24,sku-5
|
| 1496 |
+
2022-06-26,0,sku-5
|
| 1497 |
+
2022-07-03,34,sku-5
|
| 1498 |
+
2022-07-10,0,sku-5
|
| 1499 |
+
2022-07-17,30,sku-5
|
| 1500 |
+
2022-07-24,44,sku-5
|
| 1501 |
+
2022-07-31,20,sku-5
|
| 1502 |
+
2022-08-07,0,sku-5
|
| 1503 |
+
2022-08-14,60,sku-5
|
| 1504 |
+
2022-08-21,46,sku-5
|
| 1505 |
+
2022-08-28,0,sku-5
|
| 1506 |
+
2022-09-04,35,sku-5
|
| 1507 |
+
2022-09-11,20,sku-5
|
| 1508 |
+
2022-09-18,0,sku-5
|
| 1509 |
+
2022-09-25,20,sku-5
|
| 1510 |
+
2022-10-02,20,sku-5
|
| 1511 |
+
2022-10-09,0,sku-5
|
| 1512 |
+
2022-10-16,20,sku-5
|
| 1513 |
+
2022-10-23,0,sku-5
|
| 1514 |
+
2022-10-30,0,sku-5
|
| 1515 |
+
2022-11-06,0,sku-5
|
| 1516 |
+
2022-11-13,0,sku-5
|
| 1517 |
+
2022-11-20,0,sku-5
|
| 1518 |
+
2022-11-27,30,sku-5
|
| 1519 |
+
2022-12-04,10,sku-5
|
| 1520 |
+
2022-12-11,60,sku-5
|
| 1521 |
+
2022-12-18,10,sku-5
|
| 1522 |
+
2022-12-25,100,sku-5
|
| 1523 |
+
2023-01-01,20,sku-5
|
| 1524 |
+
2023-01-08,10,sku-5
|
| 1525 |
+
2023-01-15,0,sku-5
|
| 1526 |
+
2023-01-22,0,sku-5
|
| 1527 |
+
2023-01-29,2,sku-5
|
| 1528 |
+
2023-02-05,0,sku-5
|
| 1529 |
+
2023-02-12,0,sku-5
|
| 1530 |
+
2023-02-19,20,sku-5
|
| 1531 |
+
2023-02-26,5,sku-5
|
| 1532 |
+
2023-03-05,45,sku-5
|
| 1533 |
+
2023-03-12,0,sku-5
|
| 1534 |
+
2023-03-19,0,sku-5
|
| 1535 |
+
2023-03-26,0,sku-5
|
| 1536 |
+
2023-04-02,0,sku-5
|
| 1537 |
+
2023-04-09,60,sku-5
|
| 1538 |
+
2023-04-16,20,sku-5
|
| 1539 |
+
2023-04-23,5,sku-5
|
| 1540 |
+
2018-05-06,31,sku-6
|
| 1541 |
+
2018-05-13,31,sku-6
|
| 1542 |
+
2018-05-20,0,sku-6
|
| 1543 |
+
2018-05-27,5,sku-6
|
| 1544 |
+
2018-06-03,6,sku-6
|
| 1545 |
+
2018-06-10,28,sku-6
|
| 1546 |
+
2018-06-17,0,sku-6
|
| 1547 |
+
2018-06-24,36,sku-6
|
| 1548 |
+
2018-07-01,4,sku-6
|
| 1549 |
+
2018-07-08,0,sku-6
|
| 1550 |
+
2018-07-15,29,sku-6
|
| 1551 |
+
2018-07-22,0,sku-6
|
| 1552 |
+
2018-07-29,10,sku-6
|
| 1553 |
+
2018-08-05,0,sku-6
|
| 1554 |
+
2018-08-12,27,sku-6
|
| 1555 |
+
2018-08-19,0,sku-6
|
| 1556 |
+
2018-08-26,6,sku-6
|
| 1557 |
+
2018-09-02,0,sku-6
|
| 1558 |
+
2018-09-09,0,sku-6
|
| 1559 |
+
2018-09-16,0,sku-6
|
| 1560 |
+
2018-09-23,11,sku-6
|
| 1561 |
+
2018-09-30,10,sku-6
|
| 1562 |
+
2018-10-07,10,sku-6
|
| 1563 |
+
2018-10-14,6,sku-6
|
| 1564 |
+
2018-10-21,4,sku-6
|
| 1565 |
+
2018-10-28,10,sku-6
|
| 1566 |
+
2018-11-04,12,sku-6
|
| 1567 |
+
2018-11-11,0,sku-6
|
| 1568 |
+
2018-11-18,37,sku-6
|
| 1569 |
+
2018-11-25,5,sku-6
|
| 1570 |
+
2018-12-02,3,sku-6
|
| 1571 |
+
2018-12-09,10,sku-6
|
| 1572 |
+
2018-12-16,0,sku-6
|
| 1573 |
+
2018-12-23,0,sku-6
|
| 1574 |
+
2018-12-30,0,sku-6
|
| 1575 |
+
2019-01-06,0,sku-6
|
| 1576 |
+
2019-01-13,0,sku-6
|
| 1577 |
+
2019-01-20,0,sku-6
|
| 1578 |
+
2019-01-27,10,sku-6
|
| 1579 |
+
2019-02-03,17,sku-6
|
| 1580 |
+
2019-02-10,32,sku-6
|
| 1581 |
+
2019-02-17,0,sku-6
|
| 1582 |
+
2019-02-24,0,sku-6
|
| 1583 |
+
2019-03-03,20,sku-6
|
| 1584 |
+
2019-03-10,0,sku-6
|
| 1585 |
+
2019-03-17,16,sku-6
|
| 1586 |
+
2019-03-24,1,sku-6
|
| 1587 |
+
2019-03-31,8,sku-6
|
| 1588 |
+
2019-04-07,4,sku-6
|
| 1589 |
+
2019-04-14,0,sku-6
|
| 1590 |
+
2019-04-21,16,sku-6
|
| 1591 |
+
2019-04-28,30,sku-6
|
| 1592 |
+
2019-05-05,4,sku-6
|
| 1593 |
+
2019-05-12,14,sku-6
|
| 1594 |
+
2019-05-19,34,sku-6
|
| 1595 |
+
2019-05-26,16,sku-6
|
| 1596 |
+
2019-06-02,0,sku-6
|
| 1597 |
+
2019-06-09,0,sku-6
|
| 1598 |
+
2019-06-16,0,sku-6
|
| 1599 |
+
2019-06-23,15,sku-6
|
| 1600 |
+
2019-06-30,42,sku-6
|
| 1601 |
+
2019-07-07,23,sku-6
|
| 1602 |
+
2019-07-14,0,sku-6
|
| 1603 |
+
2019-07-21,0,sku-6
|
| 1604 |
+
2019-07-28,0,sku-6
|
| 1605 |
+
2019-08-04,0,sku-6
|
| 1606 |
+
2019-08-11,5,sku-6
|
| 1607 |
+
2019-08-18,9,sku-6
|
| 1608 |
+
2019-08-25,10,sku-6
|
| 1609 |
+
2019-09-01,0,sku-6
|
| 1610 |
+
2019-09-08,2,sku-6
|
| 1611 |
+
2019-09-15,30,sku-6
|
| 1612 |
+
2019-09-22,2,sku-6
|
| 1613 |
+
2019-09-29,0,sku-6
|
| 1614 |
+
2019-10-06,20,sku-6
|
| 1615 |
+
2019-10-13,25,sku-6
|
| 1616 |
+
2019-10-20,17,sku-6
|
| 1617 |
+
2019-10-27,0,sku-6
|
| 1618 |
+
2019-11-03,5,sku-6
|
| 1619 |
+
2019-11-10,7,sku-6
|
| 1620 |
+
2019-11-17,6,sku-6
|
| 1621 |
+
2019-11-24,30,sku-6
|
| 1622 |
+
2019-12-01,24,sku-6
|
| 1623 |
+
2019-12-08,8,sku-6
|
| 1624 |
+
2019-12-15,0,sku-6
|
| 1625 |
+
2019-12-22,0,sku-6
|
| 1626 |
+
2019-12-29,30,sku-6
|
| 1627 |
+
2020-01-05,0,sku-6
|
| 1628 |
+
2020-01-12,10,sku-6
|
| 1629 |
+
2020-01-19,2,sku-6
|
| 1630 |
+
2020-01-26,5,sku-6
|
| 1631 |
+
2020-02-02,29,sku-6
|
| 1632 |
+
2020-02-09,0,sku-6
|
| 1633 |
+
2020-02-16,7,sku-6
|
| 1634 |
+
2020-02-23,25,sku-6
|
| 1635 |
+
2020-03-01,0,sku-6
|
| 1636 |
+
2020-03-08,0,sku-6
|
| 1637 |
+
2020-03-15,0,sku-6
|
| 1638 |
+
2020-03-22,18,sku-6
|
| 1639 |
+
2020-03-29,13,sku-6
|
| 1640 |
+
2020-04-05,58,sku-6
|
| 1641 |
+
2020-04-12,0,sku-6
|
| 1642 |
+
2020-04-19,0,sku-6
|
| 1643 |
+
2020-04-26,8,sku-6
|
| 1644 |
+
2020-05-03,1,sku-6
|
| 1645 |
+
2020-05-10,0,sku-6
|
| 1646 |
+
2020-05-17,16,sku-6
|
| 1647 |
+
2020-05-24,0,sku-6
|
| 1648 |
+
2020-05-31,0,sku-6
|
| 1649 |
+
2020-06-07,31,sku-6
|
| 1650 |
+
2020-06-14,15,sku-6
|
| 1651 |
+
2020-06-21,6,sku-6
|
| 1652 |
+
2020-06-28,11,sku-6
|
| 1653 |
+
2020-07-05,4,sku-6
|
| 1654 |
+
2020-07-12,49,sku-6
|
| 1655 |
+
2020-07-19,12,sku-6
|
| 1656 |
+
2020-07-26,59,sku-6
|
| 1657 |
+
2020-08-02,0,sku-6
|
| 1658 |
+
2020-08-09,0,sku-6
|
| 1659 |
+
2020-08-16,0,sku-6
|
| 1660 |
+
2020-08-23,149,sku-6
|
| 1661 |
+
2020-08-30,2,sku-6
|
| 1662 |
+
2020-09-06,4,sku-6
|
| 1663 |
+
2020-09-13,0,sku-6
|
| 1664 |
+
2020-09-20,115,sku-6
|
| 1665 |
+
2020-09-27,28,sku-6
|
| 1666 |
+
2020-10-04,0,sku-6
|
| 1667 |
+
2020-10-11,25,sku-6
|
| 1668 |
+
2020-10-18,17,sku-6
|
| 1669 |
+
2020-10-25,0,sku-6
|
| 1670 |
+
2020-11-01,9,sku-6
|
| 1671 |
+
2020-11-08,0,sku-6
|
| 1672 |
+
2020-11-15,13,sku-6
|
| 1673 |
+
2020-11-22,77,sku-6
|
| 1674 |
+
2020-11-29,22,sku-6
|
| 1675 |
+
2020-12-06,20,sku-6
|
| 1676 |
+
2020-12-13,16,sku-6
|
| 1677 |
+
2020-12-20,20,sku-6
|
| 1678 |
+
2020-12-27,15,sku-6
|
| 1679 |
+
2021-01-03,0,sku-6
|
| 1680 |
+
2021-01-10,1,sku-6
|
| 1681 |
+
2021-01-17,29,sku-6
|
| 1682 |
+
2021-01-24,8,sku-6
|
| 1683 |
+
2021-01-31,33,sku-6
|
| 1684 |
+
2021-02-07,0,sku-6
|
| 1685 |
+
2021-02-14,75,sku-6
|
| 1686 |
+
2021-02-21,0,sku-6
|
| 1687 |
+
2021-02-28,17,sku-6
|
| 1688 |
+
2021-03-07,0,sku-6
|
| 1689 |
+
2021-03-14,0,sku-6
|
| 1690 |
+
2021-03-21,40,sku-6
|
| 1691 |
+
2021-03-28,24,sku-6
|
| 1692 |
+
2021-04-04,20,sku-6
|
| 1693 |
+
2021-04-11,35,sku-6
|
| 1694 |
+
2021-04-18,50,sku-6
|
| 1695 |
+
2021-04-25,25,sku-6
|
| 1696 |
+
2021-05-02,15,sku-6
|
| 1697 |
+
2021-05-09,0,sku-6
|
| 1698 |
+
2021-05-16,0,sku-6
|
| 1699 |
+
2021-05-23,0,sku-6
|
| 1700 |
+
2021-05-30,0,sku-6
|
| 1701 |
+
2021-06-06,5,sku-6
|
| 1702 |
+
2021-06-13,30,sku-6
|
| 1703 |
+
2021-06-20,5,sku-6
|
| 1704 |
+
2021-06-27,65,sku-6
|
| 1705 |
+
2021-07-04,0,sku-6
|
| 1706 |
+
2021-07-11,90,sku-6
|
| 1707 |
+
2021-07-18,2,sku-6
|
| 1708 |
+
2021-07-25,0,sku-6
|
| 1709 |
+
2021-08-01,0,sku-6
|
| 1710 |
+
2021-08-08,0,sku-6
|
| 1711 |
+
2021-08-15,0,sku-6
|
| 1712 |
+
2021-08-22,50,sku-6
|
| 1713 |
+
2021-08-29,0,sku-6
|
| 1714 |
+
2021-09-05,5,sku-6
|
| 1715 |
+
2021-09-12,50,sku-6
|
| 1716 |
+
2021-09-19,20,sku-6
|
| 1717 |
+
2021-09-26,43,sku-6
|
| 1718 |
+
2021-10-03,0,sku-6
|
| 1719 |
+
2021-10-10,63,sku-6
|
| 1720 |
+
2021-10-17,20,sku-6
|
| 1721 |
+
2021-10-24,20,sku-6
|
| 1722 |
+
2021-10-31,35,sku-6
|
| 1723 |
+
2021-11-07,15,sku-6
|
| 1724 |
+
2021-11-14,12,sku-6
|
| 1725 |
+
2021-11-21,122,sku-6
|
| 1726 |
+
2021-11-28,0,sku-6
|
| 1727 |
+
2021-12-05,56,sku-6
|
| 1728 |
+
2021-12-12,0,sku-6
|
| 1729 |
+
2021-12-19,12,sku-6
|
| 1730 |
+
2021-12-26,0,sku-6
|
| 1731 |
+
2022-01-02,5,sku-6
|
| 1732 |
+
2022-01-09,0,sku-6
|
| 1733 |
+
2022-01-16,15,sku-6
|
| 1734 |
+
2022-01-23,15,sku-6
|
| 1735 |
+
2022-01-30,0,sku-6
|
| 1736 |
+
2022-02-06,10,sku-6
|
| 1737 |
+
2022-02-13,60,sku-6
|
| 1738 |
+
2022-02-20,170,sku-6
|
| 1739 |
+
2022-02-27,50,sku-6
|
| 1740 |
+
2022-03-06,0,sku-6
|
| 1741 |
+
2022-03-13,0,sku-6
|
| 1742 |
+
2022-03-20,0,sku-6
|
| 1743 |
+
2022-03-27,0,sku-6
|
| 1744 |
+
2022-04-03,0,sku-6
|
| 1745 |
+
2022-04-10,0,sku-6
|
| 1746 |
+
2022-04-17,0,sku-6
|
| 1747 |
+
2022-04-24,4,sku-6
|
| 1748 |
+
2022-05-01,11,sku-6
|
| 1749 |
+
2022-05-08,0,sku-6
|
| 1750 |
+
2022-05-15,0,sku-6
|
| 1751 |
+
2022-05-22,0,sku-6
|
| 1752 |
+
2022-05-29,0,sku-6
|
| 1753 |
+
2022-06-05,0,sku-6
|
| 1754 |
+
2022-06-12,0,sku-6
|
| 1755 |
+
2022-06-19,0,sku-6
|
| 1756 |
+
2022-06-26,0,sku-6
|
| 1757 |
+
2022-07-03,0,sku-6
|
| 1758 |
+
2022-07-10,0,sku-6
|
| 1759 |
+
2022-07-17,40,sku-6
|
| 1760 |
+
2022-07-24,50,sku-6
|
| 1761 |
+
2022-07-31,50,sku-6
|
| 1762 |
+
2022-08-07,0,sku-6
|
| 1763 |
+
2022-08-14,100,sku-6
|
| 1764 |
+
2022-08-21,0,sku-6
|
| 1765 |
+
2022-08-28,45,sku-6
|
| 1766 |
+
2022-09-04,50,sku-6
|
| 1767 |
+
2022-09-11,100,sku-6
|
| 1768 |
+
2022-09-18,50,sku-6
|
| 1769 |
+
2022-09-25,50,sku-6
|
| 1770 |
+
2022-10-02,20,sku-6
|
| 1771 |
+
2022-10-09,0,sku-6
|
| 1772 |
+
2022-10-16,0,sku-6
|
| 1773 |
+
2022-10-23,0,sku-6
|
| 1774 |
+
2022-10-30,0,sku-6
|
| 1775 |
+
2022-11-06,0,sku-6
|
| 1776 |
+
2022-11-13,0,sku-6
|
| 1777 |
+
2022-11-20,0,sku-6
|
| 1778 |
+
2022-11-27,0,sku-6
|
| 1779 |
+
2022-12-04,0,sku-6
|
| 1780 |
+
2022-12-11,20,sku-6
|
| 1781 |
+
2022-12-18,0,sku-6
|
| 1782 |
+
2022-12-25,60,sku-6
|
| 1783 |
+
2023-01-01,20,sku-6
|
| 1784 |
+
2023-01-08,10,sku-6
|
| 1785 |
+
2023-01-15,20,sku-6
|
| 1786 |
+
2023-01-22,0,sku-6
|
| 1787 |
+
2023-01-29,10,sku-6
|
| 1788 |
+
2023-02-05,0,sku-6
|
| 1789 |
+
2023-02-12,0,sku-6
|
| 1790 |
+
2023-02-19,0,sku-6
|
| 1791 |
+
2023-02-26,0,sku-6
|
| 1792 |
+
2023-03-05,20,sku-6
|
| 1793 |
+
2023-03-12,50,sku-6
|
| 1794 |
+
2023-03-19,0,sku-6
|
| 1795 |
+
2023-03-26,0,sku-6
|
| 1796 |
+
2023-04-02,10,sku-6
|
| 1797 |
+
2023-04-09,85,sku-6
|
| 1798 |
+
2023-04-16,50,sku-6
|
| 1799 |
+
2018-05-06,5,sku-7
|
| 1800 |
+
2018-05-13,9,sku-7
|
| 1801 |
+
2018-05-20,5,sku-7
|
| 1802 |
+
2018-05-27,30,sku-7
|
| 1803 |
+
2018-06-03,5,sku-7
|
| 1804 |
+
2018-06-10,12,sku-7
|
| 1805 |
+
2018-06-17,12,sku-7
|
| 1806 |
+
2018-06-24,7,sku-7
|
| 1807 |
+
2018-07-01,30,sku-7
|
| 1808 |
+
2018-07-08,12,sku-7
|
| 1809 |
+
2018-07-15,34,sku-7
|
| 1810 |
+
2018-07-22,15,sku-7
|
| 1811 |
+
2018-07-29,25,sku-7
|
| 1812 |
+
2018-08-05,5,sku-7
|
| 1813 |
+
2018-08-12,10,sku-7
|
| 1814 |
+
2018-08-19,12,sku-7
|
| 1815 |
+
2018-08-26,44,sku-7
|
| 1816 |
+
2018-09-02,45,sku-7
|
| 1817 |
+
2018-09-09,13,sku-7
|
| 1818 |
+
2018-09-16,3,sku-7
|
| 1819 |
+
2018-09-23,43,sku-7
|
| 1820 |
+
2018-09-30,13,sku-7
|
| 1821 |
+
2018-10-07,5,sku-7
|
| 1822 |
+
2018-10-14,31,sku-7
|
| 1823 |
+
2018-10-21,10,sku-7
|
| 1824 |
+
2018-10-28,45,sku-7
|
| 1825 |
+
2018-11-04,12,sku-7
|
| 1826 |
+
2018-11-11,12,sku-7
|
| 1827 |
+
2018-11-18,84,sku-7
|
| 1828 |
+
2018-11-25,12,sku-7
|
| 1829 |
+
2018-12-02,9,sku-7
|
| 1830 |
+
2018-12-09,31,sku-7
|
| 1831 |
+
2018-12-16,43,sku-7
|
| 1832 |
+
2018-12-23,1,sku-7
|
| 1833 |
+
2018-12-30,12,sku-7
|
| 1834 |
+
2019-01-06,12,sku-7
|
| 1835 |
+
2019-01-13,12,sku-7
|
| 1836 |
+
2019-01-20,12,sku-7
|
| 1837 |
+
2019-01-27,1,sku-7
|
| 1838 |
+
2019-02-03,12,sku-7
|
| 1839 |
+
2019-02-10,12,sku-7
|
| 1840 |
+
2019-02-17,12,sku-7
|
| 1841 |
+
2019-02-24,39,sku-7
|
| 1842 |
+
2019-03-03,25,sku-7
|
| 1843 |
+
2019-03-10,5,sku-7
|
| 1844 |
+
2019-03-17,11,sku-7
|
| 1845 |
+
2019-03-24,12,sku-7
|
| 1846 |
+
2019-03-31,85,sku-7
|
| 1847 |
+
2019-04-07,12,sku-7
|
| 1848 |
+
2019-04-14,12,sku-7
|
| 1849 |
+
2019-04-21,12,sku-7
|
| 1850 |
+
2019-04-28,12,sku-7
|
| 1851 |
+
2019-05-05,12,sku-7
|
| 1852 |
+
2019-05-12,12,sku-7
|
| 1853 |
+
2019-05-19,12,sku-7
|
| 1854 |
+
2019-05-26,3,sku-7
|
| 1855 |
+
2019-06-02,5,sku-7
|
| 1856 |
+
2019-06-09,12,sku-7
|
| 1857 |
+
2019-06-16,5,sku-7
|
| 1858 |
+
2019-06-23,18,sku-7
|
| 1859 |
+
2019-06-30,7,sku-7
|
| 1860 |
+
2019-07-07,10,sku-7
|
| 1861 |
+
2019-07-14,12,sku-7
|
| 1862 |
+
2019-07-21,8,sku-7
|
| 1863 |
+
2019-07-28,12,sku-7
|
| 1864 |
+
2019-08-04,32,sku-7
|
| 1865 |
+
2019-08-11,12,sku-7
|
| 1866 |
+
2019-08-18,34,sku-7
|
| 1867 |
+
2019-08-25,12,sku-7
|
| 1868 |
+
2019-09-01,12,sku-7
|
| 1869 |
+
2019-09-08,5,sku-7
|
| 1870 |
+
2019-09-15,6,sku-7
|
| 1871 |
+
2019-09-22,8,sku-7
|
| 1872 |
+
2019-09-29,12,sku-7
|
| 1873 |
+
2019-10-06,35,sku-7
|
| 1874 |
+
2019-10-13,12,sku-7
|
| 1875 |
+
2019-10-20,12,sku-7
|
| 1876 |
+
2019-10-27,12,sku-7
|
| 1877 |
+
2019-11-03,21,sku-7
|
| 1878 |
+
2019-11-10,7,sku-7
|
| 1879 |
+
2019-11-17,10,sku-7
|
| 1880 |
+
2019-11-24,16,sku-7
|
| 1881 |
+
2019-12-01,11,sku-7
|
| 1882 |
+
2019-12-08,9,sku-7
|
| 1883 |
+
2019-12-15,12,sku-7
|
| 1884 |
+
2019-12-22,12,sku-7
|
| 1885 |
+
2019-12-29,32,sku-7
|
| 1886 |
+
2020-01-05,12,sku-7
|
| 1887 |
+
2020-01-12,4,sku-7
|
| 1888 |
+
2020-01-19,15,sku-7
|
| 1889 |
+
2020-01-26,9,sku-7
|
| 1890 |
+
2020-02-02,10,sku-7
|
| 1891 |
+
2020-02-09,20,sku-7
|
| 1892 |
+
2020-02-16,13,sku-7
|
| 1893 |
+
2020-02-23,13,sku-7
|
| 1894 |
+
2020-03-01,10,sku-7
|
| 1895 |
+
2020-03-08,21,sku-7
|
| 1896 |
+
2020-03-15,17,sku-7
|
| 1897 |
+
2020-03-22,20,sku-7
|
| 1898 |
+
2020-03-29,9,sku-7
|
| 1899 |
+
2020-04-05,15,sku-7
|
| 1900 |
+
2020-04-12,12,sku-7
|
| 1901 |
+
2020-04-19,12,sku-7
|
| 1902 |
+
2020-04-26,4,sku-7
|
| 1903 |
+
2020-05-03,12,sku-7
|
| 1904 |
+
2020-05-10,12,sku-7
|
| 1905 |
+
2020-05-17,22,sku-7
|
| 1906 |
+
2020-05-24,12,sku-7
|
| 1907 |
+
2020-05-31,12,sku-7
|
| 1908 |
+
2020-06-07,12,sku-7
|
| 1909 |
+
2020-06-14,5,sku-7
|
| 1910 |
+
2020-06-21,11,sku-7
|
| 1911 |
+
2020-06-28,12,sku-7
|
| 1912 |
+
2020-07-05,5,sku-7
|
| 1913 |
+
2020-07-12,10,sku-7
|
| 1914 |
+
2020-07-19,12,sku-7
|
| 1915 |
+
2020-07-26,42,sku-7
|
| 1916 |
+
2020-08-02,12,sku-7
|
| 1917 |
+
2020-08-09,12,sku-7
|
| 1918 |
+
2020-08-16,12,sku-7
|
| 1919 |
+
2020-08-23,140,sku-7
|
| 1920 |
+
2020-08-30,55,sku-7
|
| 1921 |
+
2020-09-06,12,sku-7
|
| 1922 |
+
2020-09-13,12,sku-7
|
| 1923 |
+
2020-09-20,12,sku-7
|
| 1924 |
+
2020-09-27,12,sku-7
|
| 1925 |
+
2020-10-04,12,sku-7
|
| 1926 |
+
2020-10-11,12,sku-7
|
| 1927 |
+
2020-10-18,12,sku-7
|
| 1928 |
+
2020-10-25,12,sku-7
|
| 1929 |
+
2020-11-01,12,sku-7
|
| 1930 |
+
2020-11-08,12,sku-7
|
| 1931 |
+
2020-11-15,12,sku-7
|
| 1932 |
+
2020-11-22,12,sku-7
|
| 1933 |
+
2020-11-29,12,sku-7
|
| 1934 |
+
2020-12-06,9,sku-7
|
| 1935 |
+
2020-12-13,5,sku-7
|
| 1936 |
+
2020-12-20,12,sku-7
|
| 1937 |
+
2020-12-27,10,sku-7
|
| 1938 |
+
2021-01-03,12,sku-7
|
| 1939 |
+
2021-01-10,12,sku-7
|
| 1940 |
+
2021-01-17,12,sku-7
|
| 1941 |
+
2021-01-24,6,sku-7
|
| 1942 |
+
2021-01-31,24,sku-7
|
| 1943 |
+
2021-02-07,10,sku-7
|
| 1944 |
+
2021-02-14,82,sku-7
|
| 1945 |
+
2021-02-21,12,sku-7
|
| 1946 |
+
2021-02-28,12,sku-7
|
| 1947 |
+
2021-03-07,12,sku-7
|
| 1948 |
+
2021-03-14,12,sku-7
|
| 1949 |
+
2021-03-21,35,sku-7
|
| 1950 |
+
2021-03-28,12,sku-7
|
| 1951 |
+
2021-04-04,12,sku-7
|
| 1952 |
+
2021-04-11,12,sku-7
|
| 1953 |
+
2021-04-18,12,sku-7
|
| 1954 |
+
2021-04-25,18,sku-7
|
| 1955 |
+
2021-05-02,10,sku-7
|
| 1956 |
+
2021-05-09,12,sku-7
|
| 1957 |
+
2021-05-16,12,sku-7
|
| 1958 |
+
2021-05-23,3,sku-7
|
| 1959 |
+
2021-05-30,3,sku-7
|
| 1960 |
+
2021-06-06,5,sku-7
|
| 1961 |
+
2021-06-13,1,sku-7
|
| 1962 |
+
2021-06-20,2,sku-7
|
| 1963 |
+
2021-06-27,15,sku-7
|
| 1964 |
+
2021-07-04,15,sku-7
|
| 1965 |
+
2021-07-11,2,sku-7
|
| 1966 |
+
2021-07-18,2,sku-7
|
| 1967 |
+
2021-07-25,2,sku-7
|
| 1968 |
+
2021-08-01,10,sku-7
|
| 1969 |
+
2021-08-08,20,sku-7
|
| 1970 |
+
2021-08-15,25,sku-7
|
| 1971 |
+
2021-08-22,12,sku-7
|
| 1972 |
+
2021-08-29,12,sku-7
|
| 1973 |
+
2021-09-05,12,sku-7
|
| 1974 |
+
2021-09-12,12,sku-7
|
| 1975 |
+
2021-09-19,12,sku-7
|
| 1976 |
+
2021-09-26,5,sku-7
|
| 1977 |
+
2021-10-03,12,sku-7
|
| 1978 |
+
2021-10-10,7,sku-7
|
| 1979 |
+
2021-10-17,25,sku-7
|
| 1980 |
+
2021-10-24,10,sku-7
|
| 1981 |
+
2021-10-31,5,sku-7
|
| 1982 |
+
2021-11-07,15,sku-7
|
| 1983 |
+
2021-11-14,8,sku-7
|
| 1984 |
+
2021-11-21,14,sku-7
|
| 1985 |
+
2021-11-28,18,sku-7
|
| 1986 |
+
2021-12-05,65,sku-7
|
| 1987 |
+
2021-12-12,12,sku-7
|
| 1988 |
+
2021-12-19,12,sku-7
|
| 1989 |
+
2021-12-26,12,sku-7
|
| 1990 |
+
2022-01-02,10,sku-7
|
| 1991 |
+
2022-01-09,15,sku-7
|
| 1992 |
+
2022-01-16,1,sku-7
|
| 1993 |
+
2022-01-23,60,sku-7
|
| 1994 |
+
2022-01-30,12,sku-7
|
| 1995 |
+
2022-02-06,30,sku-7
|
| 1996 |
+
2022-02-13,20,sku-7
|
| 1997 |
+
2022-02-20,10,sku-7
|
| 1998 |
+
2022-02-27,12,sku-7
|
| 1999 |
+
2022-03-06,12,sku-7
|
| 2000 |
+
2022-03-13,12,sku-7
|
| 2001 |
+
2022-03-20,12,sku-7
|
| 2002 |
+
2022-03-27,20,sku-7
|
| 2003 |
+
2022-04-03,12,sku-7
|
| 2004 |
+
2022-04-10,25,sku-7
|
| 2005 |
+
2022-04-17,15,sku-7
|
| 2006 |
+
2022-04-24,15,sku-7
|
| 2007 |
+
2022-05-01,10,sku-7
|
| 2008 |
+
2022-05-08,12,sku-7
|
| 2009 |
+
2022-05-15,13,sku-7
|
| 2010 |
+
2022-05-22,7,sku-7
|
| 2011 |
+
2022-05-29,26,sku-7
|
| 2012 |
+
2022-06-05,18,sku-7
|
| 2013 |
+
2022-06-12,12,sku-7
|
| 2014 |
+
2022-06-19,12,sku-7
|
| 2015 |
+
2022-06-26,12,sku-7
|
| 2016 |
+
2022-07-03,35,sku-7
|
| 2017 |
+
2022-07-10,20,sku-7
|
| 2018 |
+
2022-07-17,30,sku-7
|
| 2019 |
+
2022-07-24,8,sku-7
|
| 2020 |
+
2022-07-31,12,sku-7
|
| 2021 |
+
2022-08-07,50,sku-7
|
| 2022 |
+
2022-08-14,33,sku-7
|
| 2023 |
+
2022-08-21,12,sku-7
|
| 2024 |
+
2022-08-28,12,sku-7
|
| 2025 |
+
2022-09-04,10,sku-7
|
| 2026 |
+
2022-09-11,10,sku-7
|
| 2027 |
+
2022-09-18,12,sku-7
|
| 2028 |
+
2022-09-25,20,sku-7
|
| 2029 |
+
2022-10-02,20,sku-7
|
| 2030 |
+
2022-10-09,12,sku-7
|
| 2031 |
+
2022-10-16,50,sku-7
|
| 2032 |
+
2022-10-23,12,sku-7
|
| 2033 |
+
2022-10-30,12,sku-7
|
| 2034 |
+
2022-11-06,12,sku-7
|
| 2035 |
+
2022-11-13,12,sku-7
|
| 2036 |
+
2022-11-20,12,sku-7
|
| 2037 |
+
2022-11-27,20,sku-7
|
| 2038 |
+
2022-12-04,50,sku-7
|
| 2039 |
+
2022-12-11,60,sku-7
|
| 2040 |
+
2022-12-18,10,sku-7
|
| 2041 |
+
2022-12-25,40,sku-7
|
| 2042 |
+
2023-01-01,10,sku-7
|
| 2043 |
+
2023-01-08,30,sku-7
|
| 2044 |
+
2023-01-15,12,sku-7
|
| 2045 |
+
2023-01-22,60,sku-7
|
| 2046 |
+
2023-01-29,45,sku-7
|
| 2047 |
+
2023-02-05,5,sku-7
|
| 2048 |
+
2023-02-12,10,sku-7
|
| 2049 |
+
2023-02-19,7,sku-7
|
| 2050 |
+
2023-02-26,40,sku-7
|
| 2051 |
+
2023-03-05,20,sku-7
|
| 2052 |
+
2023-03-12,25,sku-7
|
| 2053 |
+
2023-03-19,12,sku-7
|
| 2054 |
+
2023-03-26,12,sku-7
|
| 2055 |
+
2023-04-02,35,sku-7
|
| 2056 |
+
2023-04-09,12,sku-7
|
| 2057 |
+
2023-04-16,12,sku-7
|
| 2058 |
+
2023-04-23,20,sku-7
|
| 2059 |
+
2018-05-20,1,sku-8
|
| 2060 |
+
2018-05-27,16,sku-8
|
| 2061 |
+
2018-06-03,8,sku-8
|
| 2062 |
+
2018-06-10,0,sku-8
|
| 2063 |
+
2018-06-17,0,sku-8
|
| 2064 |
+
2018-06-24,7,sku-8
|
| 2065 |
+
2018-07-01,0,sku-8
|
| 2066 |
+
2018-07-08,0,sku-8
|
| 2067 |
+
2018-07-15,1,sku-8
|
| 2068 |
+
2018-07-22,2,sku-8
|
| 2069 |
+
2018-07-29,0,sku-8
|
| 2070 |
+
2018-08-05,0,sku-8
|
| 2071 |
+
2018-08-12,0,sku-8
|
| 2072 |
+
2018-08-19,0,sku-8
|
| 2073 |
+
2018-08-26,0,sku-8
|
| 2074 |
+
2018-09-02,10,sku-8
|
| 2075 |
+
2018-09-09,0,sku-8
|
| 2076 |
+
2018-09-16,6,sku-8
|
| 2077 |
+
2018-09-23,6,sku-8
|
| 2078 |
+
2018-09-30,2,sku-8
|
| 2079 |
+
2018-10-07,7,sku-8
|
| 2080 |
+
2018-10-14,0,sku-8
|
| 2081 |
+
2018-10-21,2,sku-8
|
| 2082 |
+
2018-10-28,1,sku-8
|
| 2083 |
+
2018-11-04,1,sku-8
|
| 2084 |
+
2018-11-11,0,sku-8
|
| 2085 |
+
2018-11-18,6,sku-8
|
| 2086 |
+
2018-11-25,0,sku-8
|
| 2087 |
+
2018-12-02,0,sku-8
|
| 2088 |
+
2018-12-09,3,sku-8
|
| 2089 |
+
2018-12-16,2,sku-8
|
| 2090 |
+
2018-12-23,0,sku-8
|
| 2091 |
+
2018-12-30,5,sku-8
|
| 2092 |
+
2019-01-06,0,sku-8
|
| 2093 |
+
2019-01-13,18,sku-8
|
| 2094 |
+
2019-01-20,5,sku-8
|
| 2095 |
+
2019-01-27,0,sku-8
|
| 2096 |
+
2019-02-03,12,sku-8
|
| 2097 |
+
2019-02-10,2,sku-8
|
| 2098 |
+
2019-02-17,0,sku-8
|
| 2099 |
+
2019-02-24,12,sku-8
|
| 2100 |
+
2019-03-03,6,sku-8
|
| 2101 |
+
2019-03-10,7,sku-8
|
| 2102 |
+
2019-03-17,0,sku-8
|
| 2103 |
+
2019-03-24,12,sku-8
|
| 2104 |
+
2019-03-31,9,sku-8
|
| 2105 |
+
2019-04-07,11,sku-8
|
| 2106 |
+
2019-04-14,3,sku-8
|
| 2107 |
+
2019-04-21,0,sku-8
|
| 2108 |
+
2019-04-28,3,sku-8
|
| 2109 |
+
2019-05-05,15,sku-8
|
| 2110 |
+
2019-05-12,14,sku-8
|
| 2111 |
+
2019-05-19,4,sku-8
|
| 2112 |
+
2019-05-26,4,sku-8
|
| 2113 |
+
2019-06-02,2,sku-8
|
| 2114 |
+
2019-06-09,0,sku-8
|
| 2115 |
+
2019-06-16,0,sku-8
|
| 2116 |
+
2019-06-23,5,sku-8
|
| 2117 |
+
2019-06-30,6,sku-8
|
| 2118 |
+
2019-07-07,0,sku-8
|
| 2119 |
+
2019-07-14,0,sku-8
|
| 2120 |
+
2019-07-21,22,sku-8
|
| 2121 |
+
2019-07-28,0,sku-8
|
| 2122 |
+
2019-08-04,19,sku-8
|
| 2123 |
+
2019-08-11,3,sku-8
|
| 2124 |
+
2019-08-18,7,sku-8
|
| 2125 |
+
2019-08-25,0,sku-8
|
| 2126 |
+
2019-09-01,0,sku-8
|
| 2127 |
+
2019-09-08,11,sku-8
|
| 2128 |
+
2019-09-15,7,sku-8
|
| 2129 |
+
2019-09-22,0,sku-8
|
| 2130 |
+
2019-09-29,0,sku-8
|
| 2131 |
+
2019-10-06,18,sku-8
|
| 2132 |
+
2019-10-13,1,sku-8
|
| 2133 |
+
2019-10-20,14,sku-8
|
| 2134 |
+
2019-10-27,0,sku-8
|
| 2135 |
+
2019-11-03,9,sku-8
|
| 2136 |
+
2019-11-10,3,sku-8
|
| 2137 |
+
2019-11-17,0,sku-8
|
| 2138 |
+
2019-11-24,7,sku-8
|
| 2139 |
+
2019-12-01,9,sku-8
|
| 2140 |
+
2019-12-08,1,sku-8
|
| 2141 |
+
2019-12-15,0,sku-8
|
| 2142 |
+
2019-12-22,0,sku-8
|
| 2143 |
+
2019-12-29,0,sku-8
|
| 2144 |
+
2020-01-05,0,sku-8
|
| 2145 |
+
2020-01-12,4,sku-8
|
| 2146 |
+
2020-01-19,11,sku-8
|
| 2147 |
+
2020-01-26,19,sku-8
|
| 2148 |
+
2020-02-02,8,sku-8
|
| 2149 |
+
2020-02-09,2,sku-8
|
| 2150 |
+
2020-02-16,13,sku-8
|
| 2151 |
+
2020-02-23,2,sku-8
|
| 2152 |
+
2020-03-01,16,sku-8
|
| 2153 |
+
2020-03-08,5,sku-8
|
| 2154 |
+
2020-03-15,5,sku-8
|
| 2155 |
+
2020-03-22,9,sku-8
|
| 2156 |
+
2020-03-29,21,sku-8
|
| 2157 |
+
2020-04-05,7,sku-8
|
| 2158 |
+
2020-04-12,0,sku-8
|
| 2159 |
+
2020-04-19,0,sku-8
|
| 2160 |
+
2020-04-26,17,sku-8
|
| 2161 |
+
2020-05-03,4,sku-8
|
| 2162 |
+
2020-05-10,2,sku-8
|
| 2163 |
+
2020-05-17,19,sku-8
|
| 2164 |
+
2020-05-24,0,sku-8
|
| 2165 |
+
2020-05-31,0,sku-8
|
| 2166 |
+
2020-06-07,18,sku-8
|
| 2167 |
+
2020-06-14,0,sku-8
|
| 2168 |
+
2020-06-21,15,sku-8
|
| 2169 |
+
2020-06-28,2,sku-8
|
| 2170 |
+
2020-07-05,2,sku-8
|
| 2171 |
+
2020-07-12,0,sku-8
|
| 2172 |
+
2020-07-19,9,sku-8
|
| 2173 |
+
2020-07-26,29,sku-8
|
| 2174 |
+
2020-08-02,0,sku-8
|
| 2175 |
+
2020-08-09,0,sku-8
|
| 2176 |
+
2020-08-16,0,sku-8
|
| 2177 |
+
2020-08-23,33,sku-8
|
| 2178 |
+
2020-08-30,0,sku-8
|
| 2179 |
+
2020-09-06,6,sku-8
|
| 2180 |
+
2020-09-13,25,sku-8
|
| 2181 |
+
2020-09-20,0,sku-8
|
| 2182 |
+
2020-09-27,6,sku-8
|
| 2183 |
+
2020-10-04,15,sku-8
|
| 2184 |
+
2020-10-11,21,sku-8
|
| 2185 |
+
2020-10-18,19,sku-8
|
| 2186 |
+
2020-10-25,5,sku-8
|
| 2187 |
+
2020-11-01,12,sku-8
|
| 2188 |
+
2020-11-08,0,sku-8
|
| 2189 |
+
2020-11-15,7,sku-8
|
| 2190 |
+
2020-11-22,2,sku-8
|
| 2191 |
+
2020-11-29,6,sku-8
|
| 2192 |
+
2020-12-06,9,sku-8
|
| 2193 |
+
2020-12-13,4,sku-8
|
| 2194 |
+
2020-12-20,17,sku-8
|
| 2195 |
+
2020-12-27,12,sku-8
|
| 2196 |
+
2021-01-03,0,sku-8
|
| 2197 |
+
2021-01-10,0,sku-8
|
| 2198 |
+
2021-01-17,10,sku-8
|
| 2199 |
+
2021-01-24,12,sku-8
|
| 2200 |
+
2021-01-31,5,sku-8
|
| 2201 |
+
2021-02-07,25,sku-8
|
| 2202 |
+
2021-02-14,40,sku-8
|
| 2203 |
+
2021-02-21,0,sku-8
|
| 2204 |
+
2021-02-28,0,sku-8
|
| 2205 |
+
2021-03-07,0,sku-8
|
| 2206 |
+
2021-03-14,0,sku-8
|
| 2207 |
+
2021-03-21,0,sku-8
|
| 2208 |
+
2021-03-28,0,sku-8
|
| 2209 |
+
2021-04-04,0,sku-8
|
| 2210 |
+
2021-04-11,0,sku-8
|
| 2211 |
+
2021-04-18,13,sku-8
|
| 2212 |
+
2021-04-25,10,sku-8
|
| 2213 |
+
2021-05-02,29,sku-8
|
| 2214 |
+
2021-05-09,0,sku-8
|
| 2215 |
+
2021-05-16,0,sku-8
|
| 2216 |
+
2021-05-23,0,sku-8
|
| 2217 |
+
2021-05-30,0,sku-8
|
| 2218 |
+
2021-06-06,0,sku-8
|
| 2219 |
+
2021-06-13,7,sku-8
|
| 2220 |
+
2021-06-20,5,sku-8
|
| 2221 |
+
2021-06-27,15,sku-8
|
| 2222 |
+
2021-07-04,0,sku-8
|
| 2223 |
+
2021-07-11,10,sku-8
|
| 2224 |
+
2021-07-18,5,sku-8
|
| 2225 |
+
2021-07-25,0,sku-8
|
| 2226 |
+
2021-08-01,0,sku-8
|
| 2227 |
+
2021-08-08,0,sku-8
|
| 2228 |
+
2021-08-15,0,sku-8
|
| 2229 |
+
2021-08-22,0,sku-8
|
| 2230 |
+
2021-08-29,0,sku-8
|
| 2231 |
+
2021-09-05,18,sku-8
|
| 2232 |
+
2021-09-12,15,sku-8
|
| 2233 |
+
2021-09-19,12,sku-8
|
| 2234 |
+
2021-09-26,7,sku-8
|
| 2235 |
+
2021-10-03,0,sku-8
|
| 2236 |
+
2021-10-10,10,sku-8
|
| 2237 |
+
2021-10-17,10,sku-8
|
| 2238 |
+
2021-10-24,20,sku-8
|
| 2239 |
+
2021-10-31,5,sku-8
|
| 2240 |
+
2021-11-07,16,sku-8
|
| 2241 |
+
2021-11-14,9,sku-8
|
| 2242 |
+
2021-11-21,30,sku-8
|
| 2243 |
+
2021-11-28,12,sku-8
|
| 2244 |
+
2021-12-05,0,sku-8
|
| 2245 |
+
2021-12-12,18,sku-8
|
| 2246 |
+
2021-12-19,8,sku-8
|
| 2247 |
+
2021-12-26,0,sku-8
|
| 2248 |
+
2022-01-02,5,sku-8
|
| 2249 |
+
2022-01-09,0,sku-8
|
| 2250 |
+
2022-01-16,5,sku-8
|
| 2251 |
+
2022-01-23,30,sku-8
|
| 2252 |
+
2022-01-30,20,sku-8
|
| 2253 |
+
2022-02-06,10,sku-8
|
| 2254 |
+
2022-02-13,30,sku-8
|
| 2255 |
+
2022-02-20,0,sku-8
|
| 2256 |
+
2022-02-27,0,sku-8
|
| 2257 |
+
2022-03-06,30,sku-8
|
| 2258 |
+
2022-03-13,0,sku-8
|
| 2259 |
+
2022-03-20,30,sku-8
|
| 2260 |
+
2022-03-27,0,sku-8
|
| 2261 |
+
2022-04-03,0,sku-8
|
| 2262 |
+
2022-04-10,20,sku-8
|
| 2263 |
+
2022-04-17,30,sku-8
|
| 2264 |
+
2022-04-24,0,sku-8
|
| 2265 |
+
2022-05-01,10,sku-8
|
| 2266 |
+
2022-05-08,0,sku-8
|
| 2267 |
+
2022-05-15,15,sku-8
|
| 2268 |
+
2022-05-22,10,sku-8
|
| 2269 |
+
2022-05-29,15,sku-8
|
| 2270 |
+
2022-06-05,10,sku-8
|
| 2271 |
+
2022-06-12,20,sku-8
|
| 2272 |
+
2022-06-19,3,sku-8
|
| 2273 |
+
2022-06-26,20,sku-8
|
| 2274 |
+
2022-07-03,0,sku-8
|
| 2275 |
+
2022-07-10,0,sku-8
|
| 2276 |
+
2022-07-17,20,sku-8
|
| 2277 |
+
2022-07-24,0,sku-8
|
| 2278 |
+
2022-07-31,10,sku-8
|
| 2279 |
+
2022-08-07,20,sku-8
|
| 2280 |
+
2022-08-14,20,sku-8
|
| 2281 |
+
2022-08-21,11,sku-8
|
| 2282 |
+
2022-08-28,10,sku-8
|
| 2283 |
+
2022-09-04,44,sku-8
|
| 2284 |
+
2022-09-11,20,sku-8
|
| 2285 |
+
2022-09-18,11,sku-8
|
| 2286 |
+
2022-09-25,0,sku-8
|
| 2287 |
+
2022-10-02,10,sku-8
|
| 2288 |
+
2022-10-09,0,sku-8
|
| 2289 |
+
2022-10-16,30,sku-8
|
| 2290 |
+
2022-10-23,0,sku-8
|
| 2291 |
+
2022-10-30,0,sku-8
|
| 2292 |
+
2022-11-06,0,sku-8
|
| 2293 |
+
2022-11-13,0,sku-8
|
| 2294 |
+
2022-11-20,0,sku-8
|
| 2295 |
+
2022-11-27,0,sku-8
|
| 2296 |
+
2022-12-04,0,sku-8
|
| 2297 |
+
2022-12-11,0,sku-8
|
| 2298 |
+
2022-12-18,5,sku-8
|
| 2299 |
+
2022-12-25,10,sku-8
|
| 2300 |
+
2023-01-01,5,sku-8
|
| 2301 |
+
2023-01-08,0,sku-8
|
| 2302 |
+
2023-01-15,0,sku-8
|
| 2303 |
+
2023-01-22,10,sku-8
|
| 2304 |
+
2023-01-29,15,sku-8
|
| 2305 |
+
2023-02-05,5,sku-8
|
| 2306 |
+
2023-02-12,5,sku-8
|
| 2307 |
+
2023-02-19,10,sku-8
|
| 2308 |
+
2023-02-26,2,sku-8
|
| 2309 |
+
2023-03-05,2,sku-8
|
| 2310 |
+
2023-03-12,3,sku-8
|
| 2311 |
+
2023-03-19,10,sku-8
|
| 2312 |
+
2023-03-26,22,sku-8
|
| 2313 |
+
2023-04-02,8,sku-8
|
| 2314 |
+
2023-04-09,20,sku-8
|
| 2315 |
+
2023-04-16,0,sku-8
|
| 2316 |
+
2023-04-23,5,sku-8
|
| 2317 |
+
2018-05-27,5,sku-9
|
| 2318 |
+
2018-06-03,9,sku-9
|
| 2319 |
+
2018-06-10,2,sku-9
|
| 2320 |
+
2018-06-17,0,sku-9
|
| 2321 |
+
2018-06-24,10,sku-9
|
| 2322 |
+
2018-07-01,0,sku-9
|
| 2323 |
+
2018-07-08,0,sku-9
|
| 2324 |
+
2018-07-15,2,sku-9
|
| 2325 |
+
2018-07-22,13,sku-9
|
| 2326 |
+
2018-07-29,2,sku-9
|
| 2327 |
+
2018-08-05,2,sku-9
|
| 2328 |
+
2018-08-12,11,sku-9
|
| 2329 |
+
2018-08-19,0,sku-9
|
| 2330 |
+
2018-08-26,12,sku-9
|
| 2331 |
+
2018-09-02,1,sku-9
|
| 2332 |
+
2018-09-09,2,sku-9
|
| 2333 |
+
2018-09-16,3,sku-9
|
| 2334 |
+
2018-09-23,21,sku-9
|
| 2335 |
+
2018-09-30,5,sku-9
|
| 2336 |
+
2018-10-07,3,sku-9
|
| 2337 |
+
2018-10-14,3,sku-9
|
| 2338 |
+
2018-10-21,1,sku-9
|
| 2339 |
+
2018-10-28,9,sku-9
|
| 2340 |
+
2018-11-04,12,sku-9
|
| 2341 |
+
2018-11-11,0,sku-9
|
| 2342 |
+
2018-11-18,11,sku-9
|
| 2343 |
+
2018-11-25,24,sku-9
|
| 2344 |
+
2018-12-02,3,sku-9
|
| 2345 |
+
2018-12-09,7,sku-9
|
| 2346 |
+
2018-12-16,3,sku-9
|
| 2347 |
+
2018-12-23,43,sku-9
|
| 2348 |
+
2018-12-30,7,sku-9
|
| 2349 |
+
2019-01-06,0,sku-9
|
| 2350 |
+
2019-01-13,1,sku-9
|
| 2351 |
+
2019-01-20,1,sku-9
|
| 2352 |
+
2019-01-27,5,sku-9
|
| 2353 |
+
2019-02-03,10,sku-9
|
| 2354 |
+
2019-02-10,0,sku-9
|
| 2355 |
+
2019-02-17,0,sku-9
|
| 2356 |
+
2019-02-24,3,sku-9
|
| 2357 |
+
2019-03-03,5,sku-9
|
| 2358 |
+
2019-03-10,0,sku-9
|
| 2359 |
+
2019-03-17,17,sku-9
|
| 2360 |
+
2019-03-24,6,sku-9
|
| 2361 |
+
2019-03-31,10,sku-9
|
| 2362 |
+
2019-04-07,10,sku-9
|
| 2363 |
+
2019-04-14,30,sku-9
|
| 2364 |
+
2019-04-21,0,sku-9
|
| 2365 |
+
2019-04-28,0,sku-9
|
| 2366 |
+
2019-05-05,24,sku-9
|
| 2367 |
+
2019-05-12,9,sku-9
|
| 2368 |
+
2019-05-19,10,sku-9
|
| 2369 |
+
2019-05-26,30,sku-9
|
| 2370 |
+
2019-06-02,0,sku-9
|
| 2371 |
+
2019-06-09,0,sku-9
|
| 2372 |
+
2019-06-16,0,sku-9
|
| 2373 |
+
2019-06-23,0,sku-9
|
| 2374 |
+
2019-06-30,0,sku-9
|
| 2375 |
+
2019-07-07,0,sku-9
|
| 2376 |
+
2019-07-14,0,sku-9
|
| 2377 |
+
2019-07-21,0,sku-9
|
| 2378 |
+
2019-07-28,15,sku-9
|
| 2379 |
+
2019-08-04,0,sku-9
|
| 2380 |
+
2019-08-11,0,sku-9
|
| 2381 |
+
2019-08-18,0,sku-9
|
| 2382 |
+
2019-08-25,3,sku-9
|
| 2383 |
+
2019-09-01,2,sku-9
|
| 2384 |
+
2019-09-08,5,sku-9
|
| 2385 |
+
2019-09-15,1,sku-9
|
| 2386 |
+
2019-09-22,0,sku-9
|
| 2387 |
+
2019-09-29,0,sku-9
|
| 2388 |
+
2019-10-06,8,sku-9
|
| 2389 |
+
2019-10-13,0,sku-9
|
| 2390 |
+
2019-10-20,10,sku-9
|
| 2391 |
+
2019-10-27,5,sku-9
|
| 2392 |
+
2019-11-03,8,sku-9
|
| 2393 |
+
2019-11-10,9,sku-9
|
| 2394 |
+
2019-11-17,2,sku-9
|
| 2395 |
+
2019-11-24,7,sku-9
|
| 2396 |
+
2019-12-01,22,sku-9
|
| 2397 |
+
2019-12-08,2,sku-9
|
| 2398 |
+
2019-12-15,0,sku-9
|
| 2399 |
+
2019-12-22,0,sku-9
|
| 2400 |
+
2019-12-29,13,sku-9
|
| 2401 |
+
2020-01-05,0,sku-9
|
| 2402 |
+
2020-01-12,0,sku-9
|
| 2403 |
+
2020-01-19,0,sku-9
|
| 2404 |
+
2020-01-26,0,sku-9
|
| 2405 |
+
2020-02-02,5,sku-9
|
| 2406 |
+
2020-02-09,0,sku-9
|
| 2407 |
+
2020-02-16,6,sku-9
|
| 2408 |
+
2020-02-23,13,sku-9
|
| 2409 |
+
2020-03-01,7,sku-9
|
| 2410 |
+
2020-03-08,3,sku-9
|
| 2411 |
+
2020-03-15,6,sku-9
|
| 2412 |
+
2020-03-22,5,sku-9
|
| 2413 |
+
2020-03-29,19,sku-9
|
| 2414 |
+
2020-04-05,8,sku-9
|
| 2415 |
+
2020-04-12,0,sku-9
|
| 2416 |
+
2020-04-19,0,sku-9
|
| 2417 |
+
2020-04-26,4,sku-9
|
| 2418 |
+
2020-05-03,5,sku-9
|
| 2419 |
+
2020-05-10,0,sku-9
|
| 2420 |
+
2020-05-17,4,sku-9
|
| 2421 |
+
2020-05-24,1,sku-9
|
| 2422 |
+
2020-05-31,4,sku-9
|
| 2423 |
+
2020-06-07,8,sku-9
|
| 2424 |
+
2020-06-14,10,sku-9
|
| 2425 |
+
2020-06-21,0,sku-9
|
| 2426 |
+
2020-06-28,1,sku-9
|
| 2427 |
+
2020-07-05,3,sku-9
|
| 2428 |
+
2020-07-12,9,sku-9
|
| 2429 |
+
2020-07-19,18,sku-9
|
| 2430 |
+
2020-07-26,18,sku-9
|
| 2431 |
+
2020-08-02,0,sku-9
|
| 2432 |
+
2020-08-09,0,sku-9
|
| 2433 |
+
2020-08-16,0,sku-9
|
| 2434 |
+
2020-08-23,26,sku-9
|
| 2435 |
+
2020-08-30,0,sku-9
|
| 2436 |
+
2020-09-06,0,sku-9
|
| 2437 |
+
2020-09-13,0,sku-9
|
| 2438 |
+
2020-09-20,0,sku-9
|
| 2439 |
+
2020-09-27,2,sku-9
|
| 2440 |
+
2020-10-04,7,sku-9
|
| 2441 |
+
2020-10-11,1,sku-9
|
| 2442 |
+
2020-10-18,8,sku-9
|
| 2443 |
+
2020-10-25,0,sku-9
|
| 2444 |
+
2020-11-01,12,sku-9
|
| 2445 |
+
2020-11-08,4,sku-9
|
| 2446 |
+
2020-11-15,16,sku-9
|
| 2447 |
+
2020-11-22,2,sku-9
|
| 2448 |
+
2020-11-29,3,sku-9
|
| 2449 |
+
2020-12-06,3,sku-9
|
| 2450 |
+
2020-12-13,2,sku-9
|
| 2451 |
+
2020-12-20,20,sku-9
|
| 2452 |
+
2020-12-27,2,sku-9
|
| 2453 |
+
2021-01-03,0,sku-9
|
| 2454 |
+
2021-01-10,5,sku-9
|
| 2455 |
+
2021-01-17,5,sku-9
|
| 2456 |
+
2021-01-24,40,sku-9
|
| 2457 |
+
2021-01-31,0,sku-9
|
| 2458 |
+
2021-02-07,0,sku-9
|
| 2459 |
+
2021-02-14,0,sku-9
|
| 2460 |
+
2021-02-21,0,sku-9
|
| 2461 |
+
2021-02-28,0,sku-9
|
| 2462 |
+
2021-03-07,0,sku-9
|
| 2463 |
+
2021-03-14,0,sku-9
|
| 2464 |
+
2021-03-21,10,sku-9
|
| 2465 |
+
2021-03-28,20,sku-9
|
| 2466 |
+
2021-04-04,0,sku-9
|
| 2467 |
+
2021-04-11,10,sku-9
|
| 2468 |
+
2021-04-18,8,sku-9
|
| 2469 |
+
2021-04-25,15,sku-9
|
| 2470 |
+
2021-05-02,17,sku-9
|
| 2471 |
+
2021-05-09,0,sku-9
|
| 2472 |
+
2021-05-16,0,sku-9
|
| 2473 |
+
2021-05-23,20,sku-9
|
| 2474 |
+
2021-05-30,0,sku-9
|
| 2475 |
+
2021-06-06,0,sku-9
|
| 2476 |
+
2021-06-13,10,sku-9
|
| 2477 |
+
2021-06-20,10,sku-9
|
| 2478 |
+
2021-06-27,32,sku-9
|
| 2479 |
+
2021-07-04,0,sku-9
|
| 2480 |
+
2021-07-11,15,sku-9
|
| 2481 |
+
2021-07-18,5,sku-9
|
| 2482 |
+
2021-07-25,0,sku-9
|
| 2483 |
+
2021-08-01,0,sku-9
|
| 2484 |
+
2021-08-08,0,sku-9
|
| 2485 |
+
2021-08-15,0,sku-9
|
| 2486 |
+
2021-08-22,0,sku-9
|
| 2487 |
+
2021-08-29,15,sku-9
|
| 2488 |
+
2021-09-05,22,sku-9
|
| 2489 |
+
2021-09-12,20,sku-9
|
| 2490 |
+
2021-09-19,0,sku-9
|
| 2491 |
+
2021-09-26,0,sku-9
|
| 2492 |
+
2021-10-03,0,sku-9
|
| 2493 |
+
2021-10-10,0,sku-9
|
| 2494 |
+
2021-10-17,5,sku-9
|
| 2495 |
+
2021-10-24,15,sku-9
|
| 2496 |
+
2021-10-31,10,sku-9
|
| 2497 |
+
2021-11-07,0,sku-9
|
| 2498 |
+
2021-11-14,5,sku-9
|
| 2499 |
+
2021-11-21,11,sku-9
|
| 2500 |
+
2021-11-28,25,sku-9
|
| 2501 |
+
2021-12-05,48,sku-9
|
| 2502 |
+
2021-12-12,7,sku-9
|
| 2503 |
+
2021-12-19,0,sku-9
|
| 2504 |
+
2021-12-26,5,sku-9
|
| 2505 |
+
2022-01-02,10,sku-9
|
| 2506 |
+
2022-01-09,0,sku-9
|
| 2507 |
+
2022-01-16,7,sku-9
|
| 2508 |
+
2022-01-23,15,sku-9
|
| 2509 |
+
2022-01-30,0,sku-9
|
| 2510 |
+
2022-02-06,5,sku-9
|
| 2511 |
+
2022-02-13,30,sku-9
|
| 2512 |
+
2022-02-20,20,sku-9
|
| 2513 |
+
2022-02-27,0,sku-9
|
| 2514 |
+
2022-03-06,25,sku-9
|
| 2515 |
+
2022-03-13,15,sku-9
|
| 2516 |
+
2022-03-20,15,sku-9
|
| 2517 |
+
2022-03-27,15,sku-9
|
| 2518 |
+
2022-04-03,10,sku-9
|
| 2519 |
+
2022-04-10,30,sku-9
|
| 2520 |
+
2022-04-17,0,sku-9
|
| 2521 |
+
2022-04-24,0,sku-9
|
| 2522 |
+
2022-05-01,0,sku-9
|
| 2523 |
+
2022-05-08,0,sku-9
|
| 2524 |
+
2022-05-15,20,sku-9
|
| 2525 |
+
2022-05-22,0,sku-9
|
| 2526 |
+
2022-05-29,0,sku-9
|
| 2527 |
+
2022-06-05,10,sku-9
|
| 2528 |
+
2022-06-12,0,sku-9
|
| 2529 |
+
2022-06-19,0,sku-9
|
| 2530 |
+
2022-06-26,20,sku-9
|
| 2531 |
+
2022-07-03,30,sku-9
|
| 2532 |
+
2022-07-10,0,sku-9
|
| 2533 |
+
2022-07-17,0,sku-9
|
| 2534 |
+
2022-07-24,10,sku-9
|
| 2535 |
+
2022-07-31,0,sku-9
|
| 2536 |
+
2022-08-07,30,sku-9
|
| 2537 |
+
2022-08-14,6,sku-9
|
| 2538 |
+
2022-08-21,6,sku-9
|
| 2539 |
+
2022-08-28,10,sku-9
|
| 2540 |
+
2022-09-04,27,sku-9
|
| 2541 |
+
2022-09-11,0,sku-9
|
| 2542 |
+
2022-09-18,10,sku-9
|
| 2543 |
+
2022-09-25,10,sku-9
|
| 2544 |
+
2022-10-02,10,sku-9
|
| 2545 |
+
2022-10-09,0,sku-9
|
| 2546 |
+
2022-10-16,0,sku-9
|
| 2547 |
+
2022-10-23,10,sku-9
|
| 2548 |
+
2022-10-30,20,sku-9
|
| 2549 |
+
2022-11-06,0,sku-9
|
| 2550 |
+
2022-11-13,0,sku-9
|
| 2551 |
+
2022-11-20,50,sku-9
|
| 2552 |
+
2022-11-27,0,sku-9
|
| 2553 |
+
2022-12-04,20,sku-9
|
| 2554 |
+
2022-12-11,20,sku-9
|
| 2555 |
+
2022-12-18,30,sku-9
|
| 2556 |
+
2022-12-25,20,sku-9
|
| 2557 |
+
2023-01-01,15,sku-9
|
| 2558 |
+
2023-01-08,0,sku-9
|
| 2559 |
+
2023-01-15,5,sku-9
|
| 2560 |
+
2023-01-22,0,sku-9
|
| 2561 |
+
2023-01-29,20,sku-9
|
| 2562 |
+
2023-02-05,25,sku-9
|
| 2563 |
+
2023-02-12,10,sku-9
|
| 2564 |
+
2023-02-19,30,sku-9
|
| 2565 |
+
2023-02-26,25,sku-9
|
| 2566 |
+
2023-03-05,13,sku-9
|
| 2567 |
+
2023-03-12,15,sku-9
|
| 2568 |
+
2023-03-19,5,sku-9
|
| 2569 |
+
2023-03-26,0,sku-9
|
| 2570 |
+
2023-04-02,30,sku-9
|
| 2571 |
+
2023-04-09,2,sku-9
|
| 2572 |
+
2023-04-16,30,sku-9
|
| 2573 |
+
2023-04-23,10,sku-9
|
data/demand_forecasting_demo_models.csv
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
sku,best_model,characteristic,RMSE
|
| 2 |
+
sku-0,fft_plus,continuous,20.29778313018444
|
| 3 |
+
sku-1,holt_winters_plus,continuous,48.49842843820416
|
| 4 |
+
sku-2,prophet_plus,fuzzy,39.28846310729568
|
| 5 |
+
sku-3,prophet_plus,fuzzy_transient,14.593201789242087
|
| 6 |
+
sku-4,prophet_plus,fuzzy,10.7747925198657
|
| 7 |
+
sku-5,prophet_plus,fuzzy,28.33012802382216
|
| 8 |
+
sku-6,ceif_plus,fuzzy,37.84242038358283
|
| 9 |
+
sku-7,holt_winters_plus,continuous,15.959770854065722
|
| 10 |
+
sku-8,prophet_plus,fuzzy,13.778467035419936
|
| 11 |
+
sku-9,prophet_plus,fuzzy,12.843706019437128
|
data/fuzzy.csv
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datetime,y
|
| 2 |
+
2018-05-06,2
|
| 3 |
+
2018-05-13,12
|
| 4 |
+
2018-05-20,6
|
| 5 |
+
2018-05-27,9
|
| 6 |
+
2018-06-03,5
|
| 7 |
+
2018-06-10,2
|
| 8 |
+
2018-06-17,0
|
| 9 |
+
2018-06-24,3
|
| 10 |
+
2018-07-01,1
|
| 11 |
+
2018-07-08,6
|
| 12 |
+
2018-07-15,9
|
| 13 |
+
2018-07-22,9
|
| 14 |
+
2018-07-29,9
|
| 15 |
+
2018-08-05,8
|
| 16 |
+
2018-08-12,1
|
| 17 |
+
2018-08-19,0
|
| 18 |
+
2018-08-26,2
|
| 19 |
+
2018-09-02,11
|
| 20 |
+
2018-09-09,9
|
| 21 |
+
2018-09-16,4
|
| 22 |
+
2018-09-23,24
|
| 23 |
+
2018-09-30,13
|
| 24 |
+
2018-10-07,0
|
| 25 |
+
2018-10-14,0
|
| 26 |
+
2018-10-21,0
|
| 27 |
+
2018-10-28,6
|
| 28 |
+
2018-11-04,25
|
| 29 |
+
2018-11-11,0
|
| 30 |
+
2018-11-18,12
|
| 31 |
+
2018-11-25,5
|
| 32 |
+
2018-12-02,11
|
| 33 |
+
2018-12-09,4
|
| 34 |
+
2018-12-16,2
|
| 35 |
+
2018-12-23,4
|
| 36 |
+
2018-12-30,0
|
| 37 |
+
2019-01-06,0
|
| 38 |
+
2019-01-13,4
|
| 39 |
+
2019-01-20,9
|
| 40 |
+
2019-01-27,0
|
| 41 |
+
2019-02-03,15
|
| 42 |
+
2019-02-10,4
|
| 43 |
+
2019-02-17,0
|
| 44 |
+
2019-02-24,24
|
| 45 |
+
2019-03-03,3
|
| 46 |
+
2019-03-10,1
|
| 47 |
+
2019-03-17,5
|
| 48 |
+
2019-03-24,13
|
| 49 |
+
2019-03-31,20
|
| 50 |
+
2019-04-07,0
|
| 51 |
+
2019-04-14,0
|
| 52 |
+
2019-04-21,0
|
| 53 |
+
2019-04-28,0
|
| 54 |
+
2019-05-05,0
|
| 55 |
+
2019-05-12,0
|
| 56 |
+
2019-05-19,2
|
| 57 |
+
2019-05-26,8
|
| 58 |
+
2019-06-02,0
|
| 59 |
+
2019-06-09,0
|
| 60 |
+
2019-06-16,0
|
| 61 |
+
2019-06-23,0
|
| 62 |
+
2019-06-30,2
|
| 63 |
+
2019-07-07,8
|
| 64 |
+
2019-07-14,2
|
| 65 |
+
2019-07-21,10
|
| 66 |
+
2019-07-28,0
|
| 67 |
+
2019-08-04,12
|
| 68 |
+
2019-08-11,2
|
| 69 |
+
2019-08-18,5
|
| 70 |
+
2019-08-25,0
|
| 71 |
+
2019-09-01,7
|
| 72 |
+
2019-09-08,13
|
| 73 |
+
2019-09-15,0
|
| 74 |
+
2019-09-22,0
|
| 75 |
+
2019-09-29,0
|
| 76 |
+
2019-10-06,6
|
| 77 |
+
2019-10-13,2
|
| 78 |
+
2019-10-20,10
|
| 79 |
+
2019-10-27,0
|
| 80 |
+
2019-11-03,27
|
| 81 |
+
2019-11-10,0
|
| 82 |
+
2019-11-17,12
|
| 83 |
+
2019-11-24,9
|
| 84 |
+
2019-12-01,22
|
| 85 |
+
2019-12-08,4
|
| 86 |
+
2019-12-15,0
|
| 87 |
+
2019-12-22,0
|
| 88 |
+
2019-12-29,22
|
| 89 |
+
2020-01-05,0
|
| 90 |
+
2020-01-12,5
|
| 91 |
+
2020-01-19,4
|
| 92 |
+
2020-01-26,9
|
| 93 |
+
2020-02-02,10
|
| 94 |
+
2020-02-09,8
|
| 95 |
+
2020-02-16,5
|
| 96 |
+
2020-02-23,0
|
| 97 |
+
2020-03-01,30
|
| 98 |
+
2020-03-08,0
|
| 99 |
+
2020-03-15,10
|
| 100 |
+
2020-03-22,8
|
| 101 |
+
2020-03-29,16
|
| 102 |
+
2020-04-05,10
|
| 103 |
+
2020-04-12,0
|
| 104 |
+
2020-04-19,3
|
| 105 |
+
2020-04-26,10
|
| 106 |
+
2020-05-03,0
|
| 107 |
+
2020-05-10,0
|
| 108 |
+
2020-05-17,4
|
| 109 |
+
2020-05-24,2
|
| 110 |
+
2020-05-31,4
|
| 111 |
+
2020-06-07,11
|
| 112 |
+
2020-06-14,10
|
| 113 |
+
2020-06-21,5
|
| 114 |
+
2020-06-28,10
|
| 115 |
+
2020-07-05,2
|
| 116 |
+
2020-07-12,11
|
| 117 |
+
2020-07-19,3
|
| 118 |
+
2020-07-26,44
|
| 119 |
+
2020-08-02,0
|
| 120 |
+
2020-08-09,0
|
| 121 |
+
2020-08-16,0
|
| 122 |
+
2020-08-23,140
|
| 123 |
+
2020-08-30,40
|
| 124 |
+
2020-09-06,0
|
| 125 |
+
2020-09-13,0
|
| 126 |
+
2020-09-20,24
|
| 127 |
+
2020-09-27,12
|
| 128 |
+
2020-10-04,2
|
| 129 |
+
2020-10-11,3
|
| 130 |
+
2020-10-18,13
|
| 131 |
+
2020-10-25,13
|
| 132 |
+
2020-11-01,14
|
| 133 |
+
2020-11-08,3
|
| 134 |
+
2020-11-15,10
|
| 135 |
+
2020-11-22,20
|
| 136 |
+
2020-11-29,0
|
| 137 |
+
2020-12-06,0
|
| 138 |
+
2020-12-13,0
|
| 139 |
+
2020-12-20,0
|
| 140 |
+
2020-12-27,0
|
| 141 |
+
2021-01-03,0
|
| 142 |
+
2021-01-10,0
|
| 143 |
+
2021-01-17,0
|
| 144 |
+
2021-01-24,0
|
| 145 |
+
2021-01-31,0
|
| 146 |
+
2021-02-07,0
|
| 147 |
+
2021-02-14,60
|
| 148 |
+
2021-02-21,0
|
| 149 |
+
2021-02-28,0
|
| 150 |
+
2021-03-07,0
|
| 151 |
+
2021-03-14,0
|
| 152 |
+
2021-03-21,10
|
| 153 |
+
2021-03-28,0
|
| 154 |
+
2021-04-04,0
|
| 155 |
+
2021-04-11,0
|
| 156 |
+
2021-04-18,0
|
| 157 |
+
2021-04-25,30
|
| 158 |
+
2021-05-02,9
|
| 159 |
+
2021-05-09,7
|
| 160 |
+
2021-05-16,0
|
| 161 |
+
2021-05-23,3
|
| 162 |
+
2021-05-30,5
|
| 163 |
+
2021-06-06,3
|
| 164 |
+
2021-06-13,15
|
| 165 |
+
2021-06-20,10
|
| 166 |
+
2021-06-27,32
|
| 167 |
+
2021-07-04,0
|
| 168 |
+
2021-07-11,10
|
| 169 |
+
2021-07-18,10
|
| 170 |
+
2021-07-25,0
|
| 171 |
+
2021-08-01,0
|
| 172 |
+
2021-08-08,0
|
| 173 |
+
2021-08-15,0
|
| 174 |
+
2021-08-22,0
|
| 175 |
+
2021-08-29,0
|
| 176 |
+
2021-09-05,0
|
| 177 |
+
2021-09-12,15
|
| 178 |
+
2021-09-19,10
|
| 179 |
+
2021-09-26,5
|
| 180 |
+
2021-10-03,0
|
| 181 |
+
2021-10-10,24
|
| 182 |
+
2021-10-17,18
|
| 183 |
+
2021-10-24,6
|
| 184 |
+
2021-10-31,7
|
| 185 |
+
2021-11-07,8
|
| 186 |
+
2021-11-14,25
|
| 187 |
+
2021-11-21,10
|
| 188 |
+
2021-11-28,10
|
| 189 |
+
2021-12-05,2
|
| 190 |
+
2021-12-12,2
|
| 191 |
+
2021-12-19,0
|
| 192 |
+
2021-12-26,0
|
| 193 |
+
2022-01-02,2
|
| 194 |
+
2022-01-09,4
|
| 195 |
+
2022-01-16,3
|
| 196 |
+
2022-01-23,10
|
| 197 |
+
2022-01-30,10
|
| 198 |
+
2022-02-06,0
|
| 199 |
+
2022-02-13,20
|
| 200 |
+
2022-02-20,25
|
| 201 |
+
2022-02-27,10
|
| 202 |
+
2022-03-06,29
|
| 203 |
+
2022-03-13,10
|
| 204 |
+
2022-03-20,7
|
| 205 |
+
2022-03-27,24
|
| 206 |
+
2022-04-03,3
|
| 207 |
+
2022-04-10,10
|
| 208 |
+
2022-04-17,7
|
| 209 |
+
2022-04-24,2
|
| 210 |
+
2022-05-01,0
|
| 211 |
+
2022-05-08,0
|
| 212 |
+
2022-05-15,10
|
| 213 |
+
2022-05-22,7
|
| 214 |
+
2022-05-29,9
|
| 215 |
+
2022-06-05,6
|
| 216 |
+
2022-06-12,5
|
| 217 |
+
2022-06-19,35
|
| 218 |
+
2022-06-26,20
|
| 219 |
+
2022-07-03,0
|
| 220 |
+
2022-07-10,5
|
| 221 |
+
2022-07-17,5
|
| 222 |
+
2022-07-24,9
|
| 223 |
+
2022-07-31,14
|
| 224 |
+
2022-08-07,20
|
| 225 |
+
2022-08-14,10
|
| 226 |
+
2022-08-21,10
|
| 227 |
+
2022-08-28,1
|
| 228 |
+
2022-09-04,15
|
| 229 |
+
2022-09-11,22
|
| 230 |
+
2022-09-18,10
|
| 231 |
+
2022-09-25,10
|
| 232 |
+
2022-10-02,20
|
| 233 |
+
2022-10-09,0
|
| 234 |
+
2022-10-16,0
|
| 235 |
+
2022-10-23,0
|
| 236 |
+
2022-10-30,15
|
| 237 |
+
2022-11-06,10
|
| 238 |
+
2022-11-13,0
|
| 239 |
+
2022-11-20,10
|
| 240 |
+
2022-11-27,10
|
| 241 |
+
2022-12-04,0
|
| 242 |
+
2022-12-11,0
|
| 243 |
+
2022-12-18,0
|
| 244 |
+
2022-12-25,7
|
| 245 |
+
2023-01-01,10
|
| 246 |
+
2023-01-08,10
|
| 247 |
+
2023-01-15,0
|
| 248 |
+
2023-01-22,5
|
| 249 |
+
2023-01-29,0
|
| 250 |
+
2023-02-05,7
|
| 251 |
+
2023-02-12,2
|
| 252 |
+
2023-02-19,0
|
| 253 |
+
2023-02-26,20
|
| 254 |
+
2023-03-05,13
|
| 255 |
+
2023-03-12,10
|
| 256 |
+
2023-03-19,0
|
| 257 |
+
2023-03-26,0
|
| 258 |
+
2023-04-02,10
|
| 259 |
+
2023-04-09,8
|
| 260 |
+
2023-04-16,10
|
| 261 |
+
2023-04-23,5
|
data/fuzzy_2.csv
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datetime,y
|
| 2 |
+
2020-01-31,50.0
|
| 3 |
+
2020-02-29,0.0
|
| 4 |
+
2020-03-31,300.0
|
| 5 |
+
2020-04-30,0.0
|
| 6 |
+
2020-05-31,500.0
|
| 7 |
+
2020-06-30,1000.0
|
| 8 |
+
2020-07-31,1000.0
|
| 9 |
+
2020-08-31,500.0
|
| 10 |
+
2020-09-30,0.0
|
| 11 |
+
2020-10-31,1000.0
|
| 12 |
+
2020-11-30,1000.0
|
| 13 |
+
2020-12-31,500.0
|
| 14 |
+
2021-01-31,525.0
|
| 15 |
+
2021-02-28,750.0
|
| 16 |
+
2021-03-31,250.0
|
| 17 |
+
2021-04-30,0.0
|
| 18 |
+
2021-05-31,0.0
|
| 19 |
+
2021-06-30,975.0
|
| 20 |
+
2021-07-31,975.0
|
| 21 |
+
2021-08-31,1550.0
|
| 22 |
+
2021-09-30,1309.0
|
| 23 |
+
2021-10-31,2450.0
|
| 24 |
+
2021-11-30,2360.0
|
| 25 |
+
2021-12-31,3670.0
|
| 26 |
+
2022-01-31,5530.0
|
| 27 |
+
2022-02-28,2990.0
|
| 28 |
+
2022-03-31,1050.0
|
| 29 |
+
2022-04-30,2750.0
|
| 30 |
+
2022-05-31,6124.0
|
| 31 |
+
2022-06-30,3510.0
|
| 32 |
+
2022-07-31,4000.0
|
| 33 |
+
2022-08-31,3400.0
|
| 34 |
+
2022-09-30,2500.0
|
| 35 |
+
2022-10-31,3000.0
|
| 36 |
+
2022-11-30,3800.0
|
| 37 |
+
2022-12-31,2560.0
|
data/resource.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
test.csv came from SKU 8972413061 from CID016 data from Isuzu
|
demo.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
# from arguments import init_args
|
| 4 |
+
from gr_app.GradioApp import GradioApp
|
| 5 |
+
from gr_app import args
|
| 6 |
+
|
| 7 |
+
app = GradioApp()
|
| 8 |
+
|
| 9 |
+
demo = gr.Blocks(**args.block)
|
| 10 |
+
|
| 11 |
+
with demo:
|
| 12 |
+
warning = gr.Warning()
|
| 13 |
+
gr.Markdown('# Sentient.io - Demand Forecasting')
|
| 14 |
+
gr.Markdown('Demo for demand forecasting pipeline')
|
| 15 |
+
|
| 16 |
+
gr.Markdown('---')
|
| 17 |
+
|
| 18 |
+
gr.Markdown('# Step 1 - Load Data')
|
| 19 |
+
with gr.Row():
|
| 20 |
+
gr.Markdown('''
|
| 21 |
+
Use button "Load Demo Data" for a quick demo with pre-loaded data. For uploading your own data, please follow the below requirements.
|
| 22 |
+
|
| 23 |
+
### Data Requirements:
|
| 24 |
+
- Time series data have to be in CSV format
|
| 25 |
+
- Data must contains datetime, y and sku columns.
|
| 26 |
+
- Multiple SKUs can put in to same CSV
|
| 27 |
+
- Time interval in data must be consistent
|
| 28 |
+
- Missing value have to be filled up
|
| 29 |
+
''')
|
| 30 |
+
|
| 31 |
+
with gr.Column():
|
| 32 |
+
btn_load_data = gr.Button('Load Demo Data')
|
| 33 |
+
|
| 34 |
+
gr.Markdown('------ or ------',
|
| 35 |
+
elem_classes="demo_app_text_center")
|
| 36 |
+
|
| 37 |
+
file_upload_data = gr.File(**args.file_upload_data)
|
| 38 |
+
|
| 39 |
+
df_ts_data = gr.DataFrame(**args.df_ts_data)
|
| 40 |
+
|
| 41 |
+
gr.Markdown('---')
|
| 42 |
+
|
| 43 |
+
gr.Markdown('# Step 2 - Model Selection')
|
| 44 |
+
|
| 45 |
+
with gr.Row():
|
| 46 |
+
gr.Markdown('''
|
| 47 |
+
Train and evaluate model, identify data characteristics and select the best performing model. This step only need to run when the market regime shifted or when need to to re-select the model.
|
| 48 |
+
|
| 49 |
+
- Click "Use Demo Data" Button if the demo data set has been loaded in Step 1
|
| 50 |
+
- Else, directly proceed to model selection
|
| 51 |
+
- Only upload dataset if the model select process had been previously done, and you have save a copy of the CSV response.
|
| 52 |
+
''')
|
| 53 |
+
|
| 54 |
+
with gr.Column():
|
| 55 |
+
btn_load_model_data = gr.Button('Use Demo Data')
|
| 56 |
+
btn_model_selection = gr.Button('Model Selection', variant='primary')
|
| 57 |
+
gr.Markdown('Upload previous model selection result (if have):')
|
| 58 |
+
file_upload_model_data = gr.File(**args.file_upload_model_data)
|
| 59 |
+
|
| 60 |
+
df_model_data = gr.DataFrame()
|
| 61 |
+
file_model_data = gr.File()
|
| 62 |
+
|
| 63 |
+
gr.Markdown('# Step 3 - Forecasting')
|
| 64 |
+
|
| 65 |
+
with gr.Row():
|
| 66 |
+
gr.Markdown(
|
| 67 |
+
'This step only can be done when model selection process is completed.')
|
| 68 |
+
|
| 69 |
+
with gr.Column():
|
| 70 |
+
gr.Markdown('''
|
| 71 |
+
### Forecast Horizon
|
| 72 |
+
Max horizon will be 20% of provided data range. The unit will be same as the time series data time interval.
|
| 73 |
+
''')
|
| 74 |
+
slider_forecast_horizon = gr.Slider(**args.slider_forecast_horizon)
|
| 75 |
+
|
| 76 |
+
btn_forecast = gr.Button("Forecast", variant='primary')
|
| 77 |
+
|
| 78 |
+
df_forecast = gr.DataFrame(**args.df_forecast)
|
| 79 |
+
file_forecast = gr.File()
|
| 80 |
+
|
| 81 |
+
# ============= #
|
| 82 |
+
# = Functions = #
|
| 83 |
+
# ============= #
|
| 84 |
+
|
| 85 |
+
btn_load_data.click(
|
| 86 |
+
app.btn_load_data__click,
|
| 87 |
+
[],
|
| 88 |
+
[df_ts_data, df_model_data, file_model_data, slider_forecast_horizon])
|
| 89 |
+
|
| 90 |
+
file_upload_data.upload(
|
| 91 |
+
app.file_upload_data__upload,
|
| 92 |
+
[file_upload_data],
|
| 93 |
+
[df_ts_data, df_model_data, file_model_data, slider_forecast_horizon])
|
| 94 |
+
|
| 95 |
+
file_upload_model_data.upload(
|
| 96 |
+
app.file_upload_model_data__upload,
|
| 97 |
+
[file_upload_model_data],
|
| 98 |
+
[df_model_data, file_model_data]
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
btn_load_model_data.click(
|
| 102 |
+
app.btn_load_model_data__click,
|
| 103 |
+
[], [df_model_data, file_model_data]
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
btn_model_selection.click(
|
| 107 |
+
app.btn_model_selection__click,
|
| 108 |
+
[], [df_model_data, file_model_data])
|
| 109 |
+
|
| 110 |
+
btn_forecast.click(
|
| 111 |
+
app.btn_forecast__click,
|
| 112 |
+
[], [df_forecast, file_forecast]
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
slider_forecast_horizon.change(
|
| 116 |
+
app.slider_forecast_horizon__update,
|
| 117 |
+
[slider_forecast_horizon],
|
| 118 |
+
[])
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
demo.launch()
|
environment.yml
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: demand-forecasting
|
| 2 |
+
channels:
|
| 3 |
+
- plotly
|
| 4 |
+
- conda-forge
|
| 5 |
+
- anaconda
|
| 6 |
+
- defaults
|
| 7 |
+
dependencies:
|
| 8 |
+
- aiofiles=22.1.0
|
| 9 |
+
- aiosqlite=0.18.0
|
| 10 |
+
- anyio=3.5.0
|
| 11 |
+
# - appnope=0.1.2
|
| 12 |
+
- argon2-cffi=21.3.0
|
| 13 |
+
- argon2-cffi-bindings=21.2.0
|
| 14 |
+
- asttokens=2.0.5
|
| 15 |
+
- attrs=22.1.0
|
| 16 |
+
- babel=2.11.0
|
| 17 |
+
- backcall=0.2.0
|
| 18 |
+
- beautifulsoup4=4.12.2
|
| 19 |
+
- blas=1.0
|
| 20 |
+
- bleach=4.1.0
|
| 21 |
+
- bottleneck=1.3.5
|
| 22 |
+
- brotli=1.0.9
|
| 23 |
+
- brotli-bin=1.0.9
|
| 24 |
+
- brotlipy=0.7.0
|
| 25 |
+
- bzip2=1.0.8
|
| 26 |
+
- ca-certificates=2022.4.26
|
| 27 |
+
- cctools_osx-arm64=949.0.1
|
| 28 |
+
- certifi=2022.6.15
|
| 29 |
+
- cffi=1.15.1
|
| 30 |
+
- charset-normalizer=2.0.4
|
| 31 |
+
- clang=14.0.6
|
| 32 |
+
- clang-14=14.0.6
|
| 33 |
+
- clang_osx-arm64=14.0.6
|
| 34 |
+
- clangxx=14.0.6
|
| 35 |
+
- clangxx_osx-arm64=14.0.6
|
| 36 |
+
- cmdstan=2.31.0
|
| 37 |
+
- cmdstanpy=1.1.0
|
| 38 |
+
- comm=0.1.2
|
| 39 |
+
- compiler-rt=14.0.6
|
| 40 |
+
- compiler-rt_osx-arm64=14.0.6
|
| 41 |
+
- convertdate=2.3.2
|
| 42 |
+
- cryptography=41.0.3
|
| 43 |
+
- cycler=0.11.0
|
| 44 |
+
- debugpy=1.6.7
|
| 45 |
+
- decorator=5.1.1
|
| 46 |
+
- defusedxml=0.7.1
|
| 47 |
+
- entrypoints=0.4
|
| 48 |
+
- ephem=4.1.2
|
| 49 |
+
- exceptiongroup=1.0.4
|
| 50 |
+
- executing=0.8.3
|
| 51 |
+
- freetype=2.12.1
|
| 52 |
+
- giflib=5.2.1
|
| 53 |
+
- holidays=0.29
|
| 54 |
+
- icu=73.1
|
| 55 |
+
- idna=3.4
|
| 56 |
+
- importlib_resources=5.2.0
|
| 57 |
+
- ipykernel=6.25.0
|
| 58 |
+
- ipython=8.15.0
|
| 59 |
+
- ipython_genutils=0.2.0
|
| 60 |
+
- jedi=0.18.1
|
| 61 |
+
- jinja2=3.1.2
|
| 62 |
+
- joblib=1.3.2
|
| 63 |
+
- jpeg=9e
|
| 64 |
+
- json5=0.9.6
|
| 65 |
+
- jsonschema=4.17.3
|
| 66 |
+
- jupyter_client=7.4.9
|
| 67 |
+
- jupyter_core=5.3.0
|
| 68 |
+
- jupyter_events=0.6.3
|
| 69 |
+
- jupyter_server=1.23.4
|
| 70 |
+
- jupyter_server_fileid=0.9.0
|
| 71 |
+
- jupyter_server_ydoc=0.8.0
|
| 72 |
+
- jupyter_ydoc=0.2.4
|
| 73 |
+
- jupyterlab=3.6.3
|
| 74 |
+
- jupyterlab_pygments=0.1.2
|
| 75 |
+
- jupyterlab_server=2.22.0
|
| 76 |
+
- lcms2=2.12
|
| 77 |
+
- ld64_osx-arm64=530
|
| 78 |
+
- ldid=2.1.5
|
| 79 |
+
- lerc=3.0
|
| 80 |
+
- libbrotlicommon=1.0.9
|
| 81 |
+
- libbrotlidec=1.0.9
|
| 82 |
+
- libbrotlienc=1.0.9
|
| 83 |
+
- libclang-cpp14=14.0.6
|
| 84 |
+
- libcxx=14.0.6
|
| 85 |
+
- libdeflate=1.17
|
| 86 |
+
- libffi=3.4.4
|
| 87 |
+
# - libgfortran=5.0.0
|
| 88 |
+
- libgfortran5=11.3.0
|
| 89 |
+
- libiconv=1.16
|
| 90 |
+
- libllvm14=14.0.6
|
| 91 |
+
- libopenblas=0.3.21
|
| 92 |
+
- libpng=1.6.39
|
| 93 |
+
- libsodium=1.0.18
|
| 94 |
+
- libtiff=4.5.1
|
| 95 |
+
- libwebp=1.3.2
|
| 96 |
+
- libwebp-base=1.3.2
|
| 97 |
+
- libxml2=2.10.4
|
| 98 |
+
- libxslt=1.1.37
|
| 99 |
+
- llvm-openmp=14.0.6
|
| 100 |
+
- llvm-tools=14.0.6
|
| 101 |
+
- lunarcalendar=0.0.9
|
| 102 |
+
- lxml=4.9.3
|
| 103 |
+
- lz4-c=1.9.4
|
| 104 |
+
- make=4.3
|
| 105 |
+
- markupsafe=2.1.1
|
| 106 |
+
- matplotlib=3.7.2
|
| 107 |
+
- matplotlib-base=3.7.2
|
| 108 |
+
- matplotlib-inline=0.1.6
|
| 109 |
+
- mistune=0.8.4
|
| 110 |
+
- munkres=1.1.4
|
| 111 |
+
- nbclassic=0.5.5
|
| 112 |
+
- nbclient=0.5.13
|
| 113 |
+
- nbconvert=6.5.4
|
| 114 |
+
- nbformat=5.9.2
|
| 115 |
+
- ncurses=6.4
|
| 116 |
+
- nest-asyncio=1.5.6
|
| 117 |
+
- notebook=6.5.4
|
| 118 |
+
- notebook-shim=0.2.2
|
| 119 |
+
- numexpr=2.8.4
|
| 120 |
+
- numpy=1.25.2
|
| 121 |
+
- numpy-base=1.25.2
|
| 122 |
+
- openssl=3.1.3
|
| 123 |
+
- packaging=23.1
|
| 124 |
+
- pandocfilters=1.5.0
|
| 125 |
+
- parso=0.8.3
|
| 126 |
+
- pexpect=4.8.0
|
| 127 |
+
- pickleshare=0.7.5
|
| 128 |
+
- pip=23.2.1
|
| 129 |
+
- platformdirs=3.10.0
|
| 130 |
+
- plotly=5.16.1
|
| 131 |
+
- prometheus_client=0.14.1
|
| 132 |
+
- prompt-toolkit=3.0.36
|
| 133 |
+
- prophet=1.1.4
|
| 134 |
+
- psutil=5.9.0
|
| 135 |
+
- ptyprocess=0.7.0
|
| 136 |
+
- pure_eval=0.2.2
|
| 137 |
+
- pycparser=2.21
|
| 138 |
+
- pygments=2.15.1
|
| 139 |
+
- pymeeus=0.5.11
|
| 140 |
+
- pyopenssl=23.2.0
|
| 141 |
+
- pyparsing=3.0.9
|
| 142 |
+
- pyrsistent=0.18.0
|
| 143 |
+
- pysocks=1.7.1
|
| 144 |
+
- python=3.10.12
|
| 145 |
+
- python-dateutil=2.8.2
|
| 146 |
+
- python-dotenv=1.0.0
|
| 147 |
+
- python-fastjsonschema=2.16.2
|
| 148 |
+
- python-json-logger=2.0.7
|
| 149 |
+
- pytz=2023.3.post1
|
| 150 |
+
- pyyaml=6.0
|
| 151 |
+
- pyzmq=23.2.0
|
| 152 |
+
- readline=8.2
|
| 153 |
+
- requests=2.31.0
|
| 154 |
+
- rfc3339-validator=0.1.4
|
| 155 |
+
- rfc3986-validator=0.1.1
|
| 156 |
+
- scikit-learn=1.3.0
|
| 157 |
+
- scipy=1.11.1
|
| 158 |
+
- seaborn=0.11.2
|
| 159 |
+
- send2trash=1.8.0
|
| 160 |
+
- setuptools=68.0.0
|
| 161 |
+
- six=1.16.0
|
| 162 |
+
- sniffio=1.2.0
|
| 163 |
+
- soupsieve=2.4
|
| 164 |
+
- sqlite=3.41.2
|
| 165 |
+
- stack_data=0.2.0
|
| 166 |
+
- tapi=1100.0.11
|
| 167 |
+
- tbb=2021.8.0
|
| 168 |
+
- tbb-devel=2021.8.0
|
| 169 |
+
- tenacity=8.2.2
|
| 170 |
+
- terminado=0.17.1
|
| 171 |
+
- threadpoolctl=3.2.0
|
| 172 |
+
- tinycss2=1.2.1
|
| 173 |
+
- tk=8.6.12
|
| 174 |
+
- tomli=2.0.1
|
| 175 |
+
- tornado=6.3.2
|
| 176 |
+
- tqdm=4.65.0
|
| 177 |
+
- traitlets=5.7.1
|
| 178 |
+
- typing-extensions=4.7.1
|
| 179 |
+
- typing_extensions=4.7.1
|
| 180 |
+
- urllib3=1.26.16
|
| 181 |
+
- wcwidth=0.2.5
|
| 182 |
+
- webencodings=0.5.1
|
| 183 |
+
- websocket-client=0.58.0
|
| 184 |
+
- wheel=0.38.4
|
| 185 |
+
- xz=5.4.2
|
| 186 |
+
- y-py=0.5.9
|
| 187 |
+
- yaml=0.2.5
|
| 188 |
+
- ypy-websocket=0.8.2
|
| 189 |
+
- zeromq=4.3.4
|
| 190 |
+
- zipp=3.11.0
|
| 191 |
+
- zlib=1.2.13
|
| 192 |
+
- zstd=1.5.5
|
| 193 |
+
- pip:
|
| 194 |
+
- altair==5.0.1
|
| 195 |
+
- annotated-types==0.5.0
|
| 196 |
+
- click==8.1.7
|
| 197 |
+
- contourpy==1.1.0
|
| 198 |
+
- fastapi==0.101.1
|
| 199 |
+
- ffmpy==0.3.1
|
| 200 |
+
- filelock==3.12.2
|
| 201 |
+
- fonttools==4.42.1
|
| 202 |
+
- fsspec==2023.6.0
|
| 203 |
+
- gradio==3.41.0
|
| 204 |
+
- gradio-client==0.5.0
|
| 205 |
+
- h11==0.14.0
|
| 206 |
+
- httpcore==0.17.3
|
| 207 |
+
- httpx==0.24.1
|
| 208 |
+
- huggingface-hub==0.16.4
|
| 209 |
+
- kiwisolver==1.4.5
|
| 210 |
+
- orjson==3.9.5
|
| 211 |
+
- pandas==2.0.3
|
| 212 |
+
- pillow==10.0.0
|
| 213 |
+
- pydantic==2.3.0
|
| 214 |
+
- pydantic-core==2.6.3
|
| 215 |
+
- pydub==0.25.1
|
| 216 |
+
- python-multipart==0.0.6
|
| 217 |
+
- semantic-version==2.10.0
|
| 218 |
+
- starlette==0.27.0
|
| 219 |
+
- toolz==0.12.0
|
| 220 |
+
- tzdata==2023.3
|
| 221 |
+
- uvicorn==0.23.2
|
| 222 |
+
- websockets==11.0.3
|
forecast_result.csv
ADDED
|
@@ -0,0 +1,521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datetime,y,sku
|
| 2 |
+
2023-04-23,20,sku-0
|
| 3 |
+
2023-04-30,19,sku-0
|
| 4 |
+
2023-05-07,25,sku-0
|
| 5 |
+
2023-05-14,27,sku-0
|
| 6 |
+
2023-05-21,20,sku-0
|
| 7 |
+
2023-05-28,21,sku-0
|
| 8 |
+
2023-06-04,27,sku-0
|
| 9 |
+
2023-06-11,27,sku-0
|
| 10 |
+
2023-06-18,27,sku-0
|
| 11 |
+
2023-06-25,27,sku-0
|
| 12 |
+
2023-07-02,27,sku-0
|
| 13 |
+
2023-07-09,27,sku-0
|
| 14 |
+
2023-07-16,27,sku-0
|
| 15 |
+
2023-07-23,27,sku-0
|
| 16 |
+
2023-07-30,27,sku-0
|
| 17 |
+
2023-08-06,27,sku-0
|
| 18 |
+
2023-08-13,27,sku-0
|
| 19 |
+
2023-08-20,27,sku-0
|
| 20 |
+
2023-08-27,27,sku-0
|
| 21 |
+
2023-09-03,24,sku-0
|
| 22 |
+
2023-09-10,24,sku-0
|
| 23 |
+
2023-09-17,20,sku-0
|
| 24 |
+
2023-09-24,27,sku-0
|
| 25 |
+
2023-10-01,27,sku-0
|
| 26 |
+
2023-10-08,20,sku-0
|
| 27 |
+
2023-10-15,28,sku-0
|
| 28 |
+
2023-10-22,21,sku-0
|
| 29 |
+
2023-10-29,27,sku-0
|
| 30 |
+
2023-11-05,34,sku-0
|
| 31 |
+
2023-11-12,19,sku-0
|
| 32 |
+
2023-11-19,28,sku-0
|
| 33 |
+
2023-11-26,27,sku-0
|
| 34 |
+
2023-12-03,22,sku-0
|
| 35 |
+
2023-12-10,20,sku-0
|
| 36 |
+
2023-12-17,19,sku-0
|
| 37 |
+
2023-12-24,27,sku-0
|
| 38 |
+
2023-12-31,24,sku-0
|
| 39 |
+
2024-01-07,33,sku-0
|
| 40 |
+
2024-01-14,20,sku-0
|
| 41 |
+
2024-01-21,27,sku-0
|
| 42 |
+
2024-01-28,27,sku-0
|
| 43 |
+
2024-02-04,27,sku-0
|
| 44 |
+
2024-02-11,28,sku-0
|
| 45 |
+
2024-02-18,27,sku-0
|
| 46 |
+
2024-02-25,20,sku-0
|
| 47 |
+
2024-03-03,32,sku-0
|
| 48 |
+
2024-03-10,19,sku-0
|
| 49 |
+
2024-03-17,20,sku-0
|
| 50 |
+
2024-03-24,27,sku-0
|
| 51 |
+
2024-03-31,21,sku-0
|
| 52 |
+
2024-04-07,21,sku-0
|
| 53 |
+
2024-04-14,19,sku-0
|
| 54 |
+
2023-04-09,77,sku-1
|
| 55 |
+
2023-04-16,78,sku-1
|
| 56 |
+
2023-04-23,78,sku-1
|
| 57 |
+
2023-04-30,79,sku-1
|
| 58 |
+
2023-05-07,80,sku-1
|
| 59 |
+
2023-05-14,80,sku-1
|
| 60 |
+
2023-05-21,81,sku-1
|
| 61 |
+
2023-05-28,82,sku-1
|
| 62 |
+
2023-06-04,82,sku-1
|
| 63 |
+
2023-06-11,83,sku-1
|
| 64 |
+
2023-06-18,84,sku-1
|
| 65 |
+
2023-06-25,84,sku-1
|
| 66 |
+
2023-07-02,85,sku-1
|
| 67 |
+
2023-07-09,86,sku-1
|
| 68 |
+
2023-07-16,86,sku-1
|
| 69 |
+
2023-07-23,87,sku-1
|
| 70 |
+
2023-07-30,88,sku-1
|
| 71 |
+
2023-08-06,88,sku-1
|
| 72 |
+
2023-08-13,89,sku-1
|
| 73 |
+
2023-08-20,90,sku-1
|
| 74 |
+
2023-08-27,90,sku-1
|
| 75 |
+
2023-09-03,91,sku-1
|
| 76 |
+
2023-09-10,91,sku-1
|
| 77 |
+
2023-09-17,92,sku-1
|
| 78 |
+
2023-09-24,93,sku-1
|
| 79 |
+
2023-10-01,93,sku-1
|
| 80 |
+
2023-10-08,94,sku-1
|
| 81 |
+
2023-10-15,95,sku-1
|
| 82 |
+
2023-10-22,95,sku-1
|
| 83 |
+
2023-10-29,96,sku-1
|
| 84 |
+
2023-11-05,97,sku-1
|
| 85 |
+
2023-11-12,97,sku-1
|
| 86 |
+
2023-11-19,98,sku-1
|
| 87 |
+
2023-11-26,99,sku-1
|
| 88 |
+
2023-12-03,99,sku-1
|
| 89 |
+
2023-12-10,100,sku-1
|
| 90 |
+
2023-12-17,101,sku-1
|
| 91 |
+
2023-12-24,101,sku-1
|
| 92 |
+
2023-12-31,102,sku-1
|
| 93 |
+
2024-01-07,103,sku-1
|
| 94 |
+
2024-01-14,103,sku-1
|
| 95 |
+
2024-01-21,104,sku-1
|
| 96 |
+
2024-01-28,105,sku-1
|
| 97 |
+
2024-02-04,105,sku-1
|
| 98 |
+
2024-02-11,106,sku-1
|
| 99 |
+
2024-02-18,107,sku-1
|
| 100 |
+
2024-02-25,107,sku-1
|
| 101 |
+
2024-03-03,108,sku-1
|
| 102 |
+
2024-03-10,109,sku-1
|
| 103 |
+
2024-03-17,109,sku-1
|
| 104 |
+
2024-03-24,110,sku-1
|
| 105 |
+
2024-03-31,111,sku-1
|
| 106 |
+
2022-12-04,0,sku-2
|
| 107 |
+
2022-12-11,46,sku-2
|
| 108 |
+
2022-12-18,0,sku-2
|
| 109 |
+
2022-12-25,46,sku-2
|
| 110 |
+
2023-01-01,0,sku-2
|
| 111 |
+
2023-01-08,53,sku-2
|
| 112 |
+
2023-01-15,0,sku-2
|
| 113 |
+
2023-01-22,46,sku-2
|
| 114 |
+
2023-01-29,0,sku-2
|
| 115 |
+
2023-02-05,46,sku-2
|
| 116 |
+
2023-02-12,48,sku-2
|
| 117 |
+
2023-02-19,0,sku-2
|
| 118 |
+
2023-02-26,50,sku-2
|
| 119 |
+
2023-03-05,0,sku-2
|
| 120 |
+
2023-03-12,49,sku-2
|
| 121 |
+
2023-03-19,0,sku-2
|
| 122 |
+
2023-03-26,49,sku-2
|
| 123 |
+
2023-04-02,0,sku-2
|
| 124 |
+
2023-04-09,55,sku-2
|
| 125 |
+
2023-04-16,0,sku-2
|
| 126 |
+
2023-04-23,49,sku-2
|
| 127 |
+
2023-04-30,0,sku-2
|
| 128 |
+
2023-05-07,49,sku-2
|
| 129 |
+
2023-05-14,51,sku-2
|
| 130 |
+
2023-05-21,0,sku-2
|
| 131 |
+
2023-05-28,53,sku-2
|
| 132 |
+
2023-06-04,0,sku-2
|
| 133 |
+
2023-06-11,51,sku-2
|
| 134 |
+
2023-06-18,0,sku-2
|
| 135 |
+
2023-06-25,51,sku-2
|
| 136 |
+
2023-07-02,0,sku-2
|
| 137 |
+
2023-07-09,58,sku-2
|
| 138 |
+
2023-07-16,0,sku-2
|
| 139 |
+
2023-07-23,51,sku-2
|
| 140 |
+
2023-07-30,0,sku-2
|
| 141 |
+
2023-08-06,51,sku-2
|
| 142 |
+
2023-08-13,53,sku-2
|
| 143 |
+
2023-08-20,0,sku-2
|
| 144 |
+
2023-08-27,55,sku-2
|
| 145 |
+
2023-09-03,0,sku-2
|
| 146 |
+
2023-09-10,53,sku-2
|
| 147 |
+
2023-09-17,0,sku-2
|
| 148 |
+
2023-09-24,53,sku-2
|
| 149 |
+
2023-10-01,0,sku-2
|
| 150 |
+
2023-10-08,60,sku-2
|
| 151 |
+
2023-10-15,0,sku-2
|
| 152 |
+
2023-10-22,54,sku-2
|
| 153 |
+
2023-10-29,0,sku-2
|
| 154 |
+
2023-11-05,53,sku-2
|
| 155 |
+
2023-11-12,56,sku-2
|
| 156 |
+
2023-11-19,0,sku-2
|
| 157 |
+
2023-11-26,58,sku-2
|
| 158 |
+
2023-04-23,0,sku-3
|
| 159 |
+
2023-04-30,0,sku-3
|
| 160 |
+
2023-05-07,17,sku-3
|
| 161 |
+
2023-05-14,0,sku-3
|
| 162 |
+
2023-05-21,0,sku-3
|
| 163 |
+
2023-05-28,20,sku-3
|
| 164 |
+
2023-06-04,0,sku-3
|
| 165 |
+
2023-06-11,18,sku-3
|
| 166 |
+
2023-06-18,0,sku-3
|
| 167 |
+
2023-06-25,0,sku-3
|
| 168 |
+
2023-07-02,19,sku-3
|
| 169 |
+
2023-07-09,0,sku-3
|
| 170 |
+
2023-07-16,0,sku-3
|
| 171 |
+
2023-07-23,19,sku-3
|
| 172 |
+
2023-07-30,0,sku-3
|
| 173 |
+
2023-08-06,0,sku-3
|
| 174 |
+
2023-08-13,0,sku-3
|
| 175 |
+
2023-08-20,14,sku-3
|
| 176 |
+
2023-08-27,0,sku-3
|
| 177 |
+
2023-09-03,0,sku-3
|
| 178 |
+
2023-09-10,19,sku-3
|
| 179 |
+
2023-09-17,0,sku-3
|
| 180 |
+
2023-09-24,0,sku-3
|
| 181 |
+
2023-10-01,18,sku-3
|
| 182 |
+
2023-10-08,0,sku-3
|
| 183 |
+
2023-10-15,0,sku-3
|
| 184 |
+
2023-10-22,21,sku-3
|
| 185 |
+
2023-10-29,0,sku-3
|
| 186 |
+
2023-11-05,0,sku-3
|
| 187 |
+
2023-11-12,19,sku-3
|
| 188 |
+
2023-11-19,0,sku-3
|
| 189 |
+
2023-11-26,0,sku-3
|
| 190 |
+
2023-12-03,20,sku-3
|
| 191 |
+
2023-12-10,0,sku-3
|
| 192 |
+
2023-12-17,0,sku-3
|
| 193 |
+
2023-12-24,19,sku-3
|
| 194 |
+
2023-12-31,0,sku-3
|
| 195 |
+
2024-01-07,0,sku-3
|
| 196 |
+
2024-01-14,0,sku-3
|
| 197 |
+
2024-01-21,15,sku-3
|
| 198 |
+
2024-01-28,0,sku-3
|
| 199 |
+
2024-02-04,0,sku-3
|
| 200 |
+
2024-02-11,20,sku-3
|
| 201 |
+
2024-02-18,0,sku-3
|
| 202 |
+
2024-02-25,0,sku-3
|
| 203 |
+
2024-03-03,19,sku-3
|
| 204 |
+
2024-03-10,0,sku-3
|
| 205 |
+
2024-03-17,0,sku-3
|
| 206 |
+
2024-03-24,21,sku-3
|
| 207 |
+
2024-03-31,0,sku-3
|
| 208 |
+
2024-04-07,0,sku-3
|
| 209 |
+
2024-04-14,19,sku-3
|
| 210 |
+
2023-04-23,0,sku-4
|
| 211 |
+
2023-04-30,18,sku-4
|
| 212 |
+
2023-05-07,12,sku-4
|
| 213 |
+
2023-05-14,10,sku-4
|
| 214 |
+
2023-05-21,12,sku-4
|
| 215 |
+
2023-05-28,0,sku-4
|
| 216 |
+
2023-06-04,11,sku-4
|
| 217 |
+
2023-06-11,0,sku-4
|
| 218 |
+
2023-06-18,11,sku-4
|
| 219 |
+
2023-06-25,13,sku-4
|
| 220 |
+
2023-07-02,0,sku-4
|
| 221 |
+
2023-07-09,18,sku-4
|
| 222 |
+
2023-07-16,12,sku-4
|
| 223 |
+
2023-07-23,10,sku-4
|
| 224 |
+
2023-07-30,12,sku-4
|
| 225 |
+
2023-08-06,0,sku-4
|
| 226 |
+
2023-08-13,11,sku-4
|
| 227 |
+
2023-08-20,0,sku-4
|
| 228 |
+
2023-08-27,11,sku-4
|
| 229 |
+
2023-09-03,13,sku-4
|
| 230 |
+
2023-09-10,0,sku-4
|
| 231 |
+
2023-09-17,18,sku-4
|
| 232 |
+
2023-09-24,12,sku-4
|
| 233 |
+
2023-10-01,10,sku-4
|
| 234 |
+
2023-10-08,12,sku-4
|
| 235 |
+
2023-10-15,0,sku-4
|
| 236 |
+
2023-10-22,12,sku-4
|
| 237 |
+
2023-10-29,0,sku-4
|
| 238 |
+
2023-11-05,11,sku-4
|
| 239 |
+
2023-11-12,13,sku-4
|
| 240 |
+
2023-11-19,0,sku-4
|
| 241 |
+
2023-11-26,18,sku-4
|
| 242 |
+
2023-12-03,12,sku-4
|
| 243 |
+
2023-12-10,10,sku-4
|
| 244 |
+
2023-12-17,12,sku-4
|
| 245 |
+
2023-12-24,0,sku-4
|
| 246 |
+
2023-12-31,12,sku-4
|
| 247 |
+
2024-01-07,0,sku-4
|
| 248 |
+
2024-01-14,11,sku-4
|
| 249 |
+
2024-01-21,13,sku-4
|
| 250 |
+
2024-01-28,0,sku-4
|
| 251 |
+
2024-02-04,18,sku-4
|
| 252 |
+
2024-02-11,12,sku-4
|
| 253 |
+
2024-02-18,10,sku-4
|
| 254 |
+
2024-02-25,12,sku-4
|
| 255 |
+
2024-03-03,0,sku-4
|
| 256 |
+
2024-03-10,12,sku-4
|
| 257 |
+
2024-03-17,0,sku-4
|
| 258 |
+
2024-03-24,11,sku-4
|
| 259 |
+
2024-03-31,13,sku-4
|
| 260 |
+
2024-04-07,0,sku-4
|
| 261 |
+
2024-04-14,18,sku-4
|
| 262 |
+
2023-04-23,0,sku-5
|
| 263 |
+
2023-04-30,25,sku-5
|
| 264 |
+
2023-05-07,28,sku-5
|
| 265 |
+
2023-05-14,0,sku-5
|
| 266 |
+
2023-05-21,25,sku-5
|
| 267 |
+
2023-05-28,0,sku-5
|
| 268 |
+
2023-06-04,34,sku-5
|
| 269 |
+
2023-06-11,0,sku-5
|
| 270 |
+
2023-06-18,38,sku-5
|
| 271 |
+
2023-06-25,0,sku-5
|
| 272 |
+
2023-07-02,39,sku-5
|
| 273 |
+
2023-07-09,0,sku-5
|
| 274 |
+
2023-07-16,23,sku-5
|
| 275 |
+
2023-07-23,0,sku-5
|
| 276 |
+
2023-07-30,25,sku-5
|
| 277 |
+
2023-08-06,28,sku-5
|
| 278 |
+
2023-08-13,0,sku-5
|
| 279 |
+
2023-08-20,25,sku-5
|
| 280 |
+
2023-08-27,0,sku-5
|
| 281 |
+
2023-09-03,35,sku-5
|
| 282 |
+
2023-09-10,0,sku-5
|
| 283 |
+
2023-09-17,38,sku-5
|
| 284 |
+
2023-09-24,0,sku-5
|
| 285 |
+
2023-10-01,39,sku-5
|
| 286 |
+
2023-10-08,0,sku-5
|
| 287 |
+
2023-10-15,24,sku-5
|
| 288 |
+
2023-10-22,0,sku-5
|
| 289 |
+
2023-10-29,26,sku-5
|
| 290 |
+
2023-11-05,29,sku-5
|
| 291 |
+
2023-11-12,0,sku-5
|
| 292 |
+
2023-11-19,26,sku-5
|
| 293 |
+
2023-11-26,0,sku-5
|
| 294 |
+
2023-12-03,35,sku-5
|
| 295 |
+
2023-12-10,0,sku-5
|
| 296 |
+
2023-12-17,39,sku-5
|
| 297 |
+
2023-12-24,0,sku-5
|
| 298 |
+
2023-12-31,39,sku-5
|
| 299 |
+
2024-01-07,0,sku-5
|
| 300 |
+
2024-01-14,24,sku-5
|
| 301 |
+
2024-01-21,0,sku-5
|
| 302 |
+
2024-01-28,26,sku-5
|
| 303 |
+
2024-02-04,29,sku-5
|
| 304 |
+
2024-02-11,0,sku-5
|
| 305 |
+
2024-02-18,26,sku-5
|
| 306 |
+
2024-02-25,0,sku-5
|
| 307 |
+
2024-03-03,35,sku-5
|
| 308 |
+
2024-03-10,0,sku-5
|
| 309 |
+
2024-03-17,39,sku-5
|
| 310 |
+
2024-03-24,0,sku-5
|
| 311 |
+
2024-03-31,40,sku-5
|
| 312 |
+
2024-04-07,0,sku-5
|
| 313 |
+
2024-04-14,25,sku-5
|
| 314 |
+
2023-04-16,0,sku-6
|
| 315 |
+
2023-04-23,0,sku-6
|
| 316 |
+
2023-04-30,0,sku-6
|
| 317 |
+
2023-05-07,65,sku-6
|
| 318 |
+
2023-05-14,0,sku-6
|
| 319 |
+
2023-05-21,0,sku-6
|
| 320 |
+
2023-05-28,0,sku-6
|
| 321 |
+
2023-06-04,65,sku-6
|
| 322 |
+
2023-06-11,0,sku-6
|
| 323 |
+
2023-06-18,0,sku-6
|
| 324 |
+
2023-06-25,0,sku-6
|
| 325 |
+
2023-07-02,39,sku-6
|
| 326 |
+
2023-07-09,0,sku-6
|
| 327 |
+
2023-07-16,0,sku-6
|
| 328 |
+
2023-07-23,0,sku-6
|
| 329 |
+
2023-07-30,40,sku-6
|
| 330 |
+
2023-08-06,0,sku-6
|
| 331 |
+
2023-08-13,0,sku-6
|
| 332 |
+
2023-08-20,0,sku-6
|
| 333 |
+
2023-08-27,62,sku-6
|
| 334 |
+
2023-09-03,0,sku-6
|
| 335 |
+
2023-09-10,0,sku-6
|
| 336 |
+
2023-09-17,0,sku-6
|
| 337 |
+
2023-09-24,70,sku-6
|
| 338 |
+
2023-10-01,0,sku-6
|
| 339 |
+
2023-10-08,0,sku-6
|
| 340 |
+
2023-10-15,0,sku-6
|
| 341 |
+
2023-10-22,0,sku-6
|
| 342 |
+
2023-10-29,0,sku-6
|
| 343 |
+
2023-11-05,38,sku-6
|
| 344 |
+
2023-11-12,0,sku-6
|
| 345 |
+
2023-11-19,0,sku-6
|
| 346 |
+
2023-11-26,0,sku-6
|
| 347 |
+
2023-12-03,63,sku-6
|
| 348 |
+
2023-12-10,0,sku-6
|
| 349 |
+
2023-12-17,0,sku-6
|
| 350 |
+
2023-12-24,0,sku-6
|
| 351 |
+
2023-12-31,0,sku-6
|
| 352 |
+
2024-01-07,0,sku-6
|
| 353 |
+
2024-01-14,0,sku-6
|
| 354 |
+
2024-01-21,0,sku-6
|
| 355 |
+
2024-01-28,0,sku-6
|
| 356 |
+
2024-02-04,44,sku-6
|
| 357 |
+
2024-02-11,0,sku-6
|
| 358 |
+
2024-02-18,0,sku-6
|
| 359 |
+
2024-02-25,0,sku-6
|
| 360 |
+
2024-03-03,0,sku-6
|
| 361 |
+
2024-03-10,61,sku-6
|
| 362 |
+
2024-03-17,0,sku-6
|
| 363 |
+
2024-03-24,0,sku-6
|
| 364 |
+
2024-03-31,0,sku-6
|
| 365 |
+
2024-04-07,40,sku-6
|
| 366 |
+
2023-04-23,17,sku-7
|
| 367 |
+
2023-04-30,17,sku-7
|
| 368 |
+
2023-05-07,17,sku-7
|
| 369 |
+
2023-05-14,17,sku-7
|
| 370 |
+
2023-05-21,17,sku-7
|
| 371 |
+
2023-05-28,17,sku-7
|
| 372 |
+
2023-06-04,17,sku-7
|
| 373 |
+
2023-06-11,17,sku-7
|
| 374 |
+
2023-06-18,17,sku-7
|
| 375 |
+
2023-06-25,17,sku-7
|
| 376 |
+
2023-07-02,17,sku-7
|
| 377 |
+
2023-07-09,17,sku-7
|
| 378 |
+
2023-07-16,17,sku-7
|
| 379 |
+
2023-07-23,17,sku-7
|
| 380 |
+
2023-07-30,17,sku-7
|
| 381 |
+
2023-08-06,17,sku-7
|
| 382 |
+
2023-08-13,17,sku-7
|
| 383 |
+
2023-08-20,17,sku-7
|
| 384 |
+
2023-08-27,17,sku-7
|
| 385 |
+
2023-09-03,17,sku-7
|
| 386 |
+
2023-09-10,17,sku-7
|
| 387 |
+
2023-09-17,17,sku-7
|
| 388 |
+
2023-09-24,17,sku-7
|
| 389 |
+
2023-10-01,17,sku-7
|
| 390 |
+
2023-10-08,17,sku-7
|
| 391 |
+
2023-10-15,17,sku-7
|
| 392 |
+
2023-10-22,17,sku-7
|
| 393 |
+
2023-10-29,17,sku-7
|
| 394 |
+
2023-11-05,17,sku-7
|
| 395 |
+
2023-11-12,17,sku-7
|
| 396 |
+
2023-11-19,17,sku-7
|
| 397 |
+
2023-11-26,17,sku-7
|
| 398 |
+
2023-12-03,17,sku-7
|
| 399 |
+
2023-12-10,17,sku-7
|
| 400 |
+
2023-12-17,17,sku-7
|
| 401 |
+
2023-12-24,17,sku-7
|
| 402 |
+
2023-12-31,17,sku-7
|
| 403 |
+
2024-01-07,17,sku-7
|
| 404 |
+
2024-01-14,17,sku-7
|
| 405 |
+
2024-01-21,17,sku-7
|
| 406 |
+
2024-01-28,17,sku-7
|
| 407 |
+
2024-02-04,17,sku-7
|
| 408 |
+
2024-02-11,17,sku-7
|
| 409 |
+
2024-02-18,17,sku-7
|
| 410 |
+
2024-02-25,17,sku-7
|
| 411 |
+
2024-03-03,17,sku-7
|
| 412 |
+
2024-03-10,17,sku-7
|
| 413 |
+
2024-03-17,17,sku-7
|
| 414 |
+
2024-03-24,17,sku-7
|
| 415 |
+
2024-03-31,17,sku-7
|
| 416 |
+
2024-04-07,17,sku-7
|
| 417 |
+
2024-04-14,17,sku-7
|
| 418 |
+
2023-04-23,15,sku-8
|
| 419 |
+
2023-04-30,0,sku-8
|
| 420 |
+
2023-05-07,16,sku-8
|
| 421 |
+
2023-05-14,18,sku-8
|
| 422 |
+
2023-05-21,0,sku-8
|
| 423 |
+
2023-05-28,17,sku-8
|
| 424 |
+
2023-06-04,15,sku-8
|
| 425 |
+
2023-06-11,0,sku-8
|
| 426 |
+
2023-06-18,17,sku-8
|
| 427 |
+
2023-06-25,13,sku-8
|
| 428 |
+
2023-07-02,16,sku-8
|
| 429 |
+
2023-07-09,0,sku-8
|
| 430 |
+
2023-07-16,16,sku-8
|
| 431 |
+
2023-07-23,18,sku-8
|
| 432 |
+
2023-07-30,0,sku-8
|
| 433 |
+
2023-08-06,18,sku-8
|
| 434 |
+
2023-08-13,15,sku-8
|
| 435 |
+
2023-08-20,0,sku-8
|
| 436 |
+
2023-08-27,17,sku-8
|
| 437 |
+
2023-09-03,13,sku-8
|
| 438 |
+
2023-09-10,16,sku-8
|
| 439 |
+
2023-09-17,0,sku-8
|
| 440 |
+
2023-09-24,16,sku-8
|
| 441 |
+
2023-10-01,18,sku-8
|
| 442 |
+
2023-10-08,0,sku-8
|
| 443 |
+
2023-10-15,18,sku-8
|
| 444 |
+
2023-10-22,15,sku-8
|
| 445 |
+
2023-10-29,0,sku-8
|
| 446 |
+
2023-11-05,18,sku-8
|
| 447 |
+
2023-11-12,14,sku-8
|
| 448 |
+
2023-11-19,17,sku-8
|
| 449 |
+
2023-11-26,0,sku-8
|
| 450 |
+
2023-12-03,17,sku-8
|
| 451 |
+
2023-12-10,19,sku-8
|
| 452 |
+
2023-12-17,0,sku-8
|
| 453 |
+
2023-12-24,18,sku-8
|
| 454 |
+
2023-12-31,16,sku-8
|
| 455 |
+
2024-01-07,0,sku-8
|
| 456 |
+
2024-01-14,18,sku-8
|
| 457 |
+
2024-01-21,14,sku-8
|
| 458 |
+
2024-01-28,17,sku-8
|
| 459 |
+
2024-02-04,0,sku-8
|
| 460 |
+
2024-02-11,17,sku-8
|
| 461 |
+
2024-02-18,19,sku-8
|
| 462 |
+
2024-02-25,0,sku-8
|
| 463 |
+
2024-03-03,19,sku-8
|
| 464 |
+
2024-03-10,16,sku-8
|
| 465 |
+
2024-03-17,0,sku-8
|
| 466 |
+
2024-03-24,18,sku-8
|
| 467 |
+
2024-03-31,14,sku-8
|
| 468 |
+
2024-04-07,17,sku-8
|
| 469 |
+
2024-04-14,0,sku-8
|
| 470 |
+
2023-04-23,0,sku-9
|
| 471 |
+
2023-04-30,19,sku-9
|
| 472 |
+
2023-05-07,0,sku-9
|
| 473 |
+
2023-05-14,17,sku-9
|
| 474 |
+
2023-05-21,0,sku-9
|
| 475 |
+
2023-05-28,21,sku-9
|
| 476 |
+
2023-06-04,0,sku-9
|
| 477 |
+
2023-06-11,19,sku-9
|
| 478 |
+
2023-06-18,0,sku-9
|
| 479 |
+
2023-06-25,17,sku-9
|
| 480 |
+
2023-07-02,0,sku-9
|
| 481 |
+
2023-07-09,19,sku-9
|
| 482 |
+
2023-07-16,0,sku-9
|
| 483 |
+
2023-07-23,19,sku-9
|
| 484 |
+
2023-07-30,0,sku-9
|
| 485 |
+
2023-08-06,20,sku-9
|
| 486 |
+
2023-08-13,0,sku-9
|
| 487 |
+
2023-08-20,18,sku-9
|
| 488 |
+
2023-08-27,0,sku-9
|
| 489 |
+
2023-09-03,21,sku-9
|
| 490 |
+
2023-09-10,0,sku-9
|
| 491 |
+
2023-09-17,20,sku-9
|
| 492 |
+
2023-09-24,0,sku-9
|
| 493 |
+
2023-10-01,18,sku-9
|
| 494 |
+
2023-10-08,0,sku-9
|
| 495 |
+
2023-10-15,20,sku-9
|
| 496 |
+
2023-10-22,0,sku-9
|
| 497 |
+
2023-10-29,20,sku-9
|
| 498 |
+
2023-11-05,0,sku-9
|
| 499 |
+
2023-11-12,20,sku-9
|
| 500 |
+
2023-11-19,0,sku-9
|
| 501 |
+
2023-11-26,18,sku-9
|
| 502 |
+
2023-12-03,0,sku-9
|
| 503 |
+
2023-12-10,22,sku-9
|
| 504 |
+
2023-12-17,0,sku-9
|
| 505 |
+
2023-12-24,20,sku-9
|
| 506 |
+
2023-12-31,0,sku-9
|
| 507 |
+
2024-01-07,18,sku-9
|
| 508 |
+
2024-01-14,0,sku-9
|
| 509 |
+
2024-01-21,20,sku-9
|
| 510 |
+
2024-01-28,0,sku-9
|
| 511 |
+
2024-02-04,20,sku-9
|
| 512 |
+
2024-02-11,0,sku-9
|
| 513 |
+
2024-02-18,21,sku-9
|
| 514 |
+
2024-02-25,0,sku-9
|
| 515 |
+
2024-03-03,19,sku-9
|
| 516 |
+
2024-03-10,0,sku-9
|
| 517 |
+
2024-03-17,22,sku-9
|
| 518 |
+
2024-03-24,0,sku-9
|
| 519 |
+
2024-03-31,21,sku-9
|
| 520 |
+
2024-04-07,0,sku-9
|
| 521 |
+
2024-04-14,19,sku-9
|
gr_app/GradioApp.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import math
|
| 3 |
+
from src.main import DemandForecasting
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class GradioApp():
|
| 9 |
+
def __init__(self):
|
| 10 |
+
self.forecaster = DemandForecasting()
|
| 11 |
+
|
| 12 |
+
self.ts_data = None # Time series data for model training and forecasting
|
| 13 |
+
self.model_data = None
|
| 14 |
+
self.skus = None
|
| 15 |
+
|
| 16 |
+
self.forecast_horizon = 1
|
| 17 |
+
|
| 18 |
+
def __set_ts_data(self, path):
|
| 19 |
+
self.ts_data = pd.read_csv(path)
|
| 20 |
+
self.skus = self.ts_data['sku'].unique()
|
| 21 |
+
|
| 22 |
+
self.model_data = pd.DataFrame(
|
| 23 |
+
{
|
| 24 |
+
'sku': self.skus,
|
| 25 |
+
'best_model': '',
|
| 26 |
+
'characteristic': '',
|
| 27 |
+
'RMSE': ''
|
| 28 |
+
}
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
def __set_model(self, model_df):
|
| 32 |
+
if (self.skus is None):
|
| 33 |
+
raise gr.Error(
|
| 34 |
+
'Incorrect SKUs, time series data must be loaded and SKUs must match.')
|
| 35 |
+
if (set(self.skus) - set(model_df['sku']) != set()):
|
| 36 |
+
raise gr.Error(
|
| 37 |
+
'SKUs in provided model select data does not match SKUs in timeseries data.'
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
self.model_data = model_df
|
| 41 |
+
|
| 42 |
+
def btn_load_data__click(self):
|
| 43 |
+
print('btn_load_data__click')
|
| 44 |
+
self.__set_ts_data('./data/demand_forecasting_demo_data.csv')
|
| 45 |
+
|
| 46 |
+
return (self.update__df_ts_data(),
|
| 47 |
+
self.update__df_model_data(),
|
| 48 |
+
self.update__file_model_data(),
|
| 49 |
+
self.update__slider_forecast_horizon())
|
| 50 |
+
|
| 51 |
+
def file_upload_data__upload(self, file):
|
| 52 |
+
self.__set_ts_data(file.name)
|
| 53 |
+
|
| 54 |
+
return (self.update__df_ts_data(),
|
| 55 |
+
self.update__df_model_data(),
|
| 56 |
+
self.update__file_model_data(),
|
| 57 |
+
self.update__slider_forecast_horizon())
|
| 58 |
+
|
| 59 |
+
def file_upload_model_data__upload(self, file):
|
| 60 |
+
model_df = pd.read_csv(file.name)
|
| 61 |
+
self.__set_model(model_df)
|
| 62 |
+
|
| 63 |
+
return (self.update__df_model_data(),
|
| 64 |
+
self.update__file_model_data())
|
| 65 |
+
|
| 66 |
+
def btn_load_model_data__click(self):
|
| 67 |
+
|
| 68 |
+
model_df = pd.read_csv(
|
| 69 |
+
'./data/demand_forecasting_demo_models.csv')
|
| 70 |
+
self.__set_model(model_df)
|
| 71 |
+
|
| 72 |
+
return (self.update__df_model_data(),
|
| 73 |
+
self.update__file_model_data())
|
| 74 |
+
|
| 75 |
+
def btn_model_selection__click(self):
|
| 76 |
+
print('btn_model_selection__click')
|
| 77 |
+
for sku in self.skus:
|
| 78 |
+
print('Selecting model ', sku)
|
| 79 |
+
data = self.ts_data[self.ts_data['sku'] == sku]
|
| 80 |
+
|
| 81 |
+
# ----------------- #
|
| 82 |
+
# Feature Selection #
|
| 83 |
+
# ----------------- #
|
| 84 |
+
res = self.forecaster.forecast(
|
| 85 |
+
data, 0, model='all', run_test=True)
|
| 86 |
+
|
| 87 |
+
self.model_data.loc[self.model_data['sku'] ==
|
| 88 |
+
sku, 'characteristic'] = res['characteristic']
|
| 89 |
+
|
| 90 |
+
self.model_data.loc[self.model_data['sku'] ==
|
| 91 |
+
sku, 'best_model'] = res['forecast'][0]['model']
|
| 92 |
+
self.model_data.loc[self.model_data['sku'] ==
|
| 93 |
+
sku, 'RMSE'] = math.round(res['forecast'][0]['RMSE'], 2)
|
| 94 |
+
|
| 95 |
+
return (self.update__df_model_data(),
|
| 96 |
+
self.update__file_model_data())
|
| 97 |
+
|
| 98 |
+
def slider_forecast_horizon__update(self, slider):
|
| 99 |
+
# print('slider_forecast_horizon__update ', slider)
|
| 100 |
+
self.forecast_horizon = slider
|
| 101 |
+
|
| 102 |
+
def btn_forecast__click(self):
|
| 103 |
+
# ----------- #
|
| 104 |
+
# Forecasting #
|
| 105 |
+
# ----------- #
|
| 106 |
+
forecasts = []
|
| 107 |
+
for sku in self.skus:
|
| 108 |
+
print('Forecasting ', sku)
|
| 109 |
+
data = self.ts_data[self.ts_data['sku'] == sku]
|
| 110 |
+
|
| 111 |
+
# Drop sku column first, for now the pipeline doesn't take this column
|
| 112 |
+
data = data.drop('sku', axis=1)
|
| 113 |
+
|
| 114 |
+
model_data = self.model_data[self.model_data['sku'] == sku]
|
| 115 |
+
print(model_data)
|
| 116 |
+
model = model_data['best_model'].tolist()[0]
|
| 117 |
+
characteristic = model_data['characteristic'].tolist()[0]
|
| 118 |
+
|
| 119 |
+
# ----------------- #
|
| 120 |
+
# Feature Selection #
|
| 121 |
+
# ----------------- #
|
| 122 |
+
print(model, characteristic)
|
| 123 |
+
res = self.forecaster.forecast(
|
| 124 |
+
data, self.forecast_horizon, model=model, run_test=False, characteristic=characteristic)
|
| 125 |
+
forecast = pd.DataFrame(
|
| 126 |
+
res['forecast'][0]['forecast'], columns=['datetime', 'y'])
|
| 127 |
+
forecast['sku'] = sku
|
| 128 |
+
forecasts.append(forecast)
|
| 129 |
+
|
| 130 |
+
self.forecast = pd.concat(forecasts)
|
| 131 |
+
|
| 132 |
+
return (self.update__df_forecast(),
|
| 133 |
+
self.update__file_forecast())
|
| 134 |
+
|
| 135 |
+
# ======== #
|
| 136 |
+
# Updaters #
|
| 137 |
+
# ======== #
|
| 138 |
+
|
| 139 |
+
def update__file_model_data(self):
|
| 140 |
+
self.model_data.to_csv('./best_models.csv', index=False)
|
| 141 |
+
return gr.File.update(value='./best_models.csv')
|
| 142 |
+
|
| 143 |
+
def update__df_model_data(self):
|
| 144 |
+
return gr.DataFrame.update(value=self.model_data)
|
| 145 |
+
|
| 146 |
+
def update__df_ts_data(self):
|
| 147 |
+
return gr.DataFrame.update(value=self.ts_data)
|
| 148 |
+
|
| 149 |
+
def update__slider_forecast_horizon(self):
|
| 150 |
+
sku = self.skus[0]
|
| 151 |
+
|
| 152 |
+
max_horizon = int(
|
| 153 |
+
self.ts_data[self.ts_data['sku'] == sku].shape[0] * 0.2)
|
| 154 |
+
|
| 155 |
+
return gr.Slider.update(maximum=max_horizon)
|
| 156 |
+
|
| 157 |
+
def update__df_forecast(self):
|
| 158 |
+
return gr.DataFrame.update(self.forecast)
|
| 159 |
+
|
| 160 |
+
def update__file_forecast(self):
|
| 161 |
+
self.forecast.to_csv('./forecast_result.csv', index=False)
|
| 162 |
+
return gr.File.update(value='./forecast_result.csv')
|
gr_app/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
gr_app/__pycache__/GradioApp.cpython-310.pyc
ADDED
|
Binary file (5.04 kB). View file
|
|
|
gr_app/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (172 Bytes). View file
|
|
|
gr_app/__pycache__/args.cpython-310.pyc
ADDED
|
Binary file (533 Bytes). View file
|
|
|
gr_app/args.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
block = {
|
| 2 |
+
'css':
|
| 3 |
+
'''
|
| 4 |
+
.demo_app_group {padding: 1rem !important; color:red}
|
| 5 |
+
|
| 6 |
+
.demo_app_text_center {text-align: center}
|
| 7 |
+
'''
|
| 8 |
+
}
|
| 9 |
+
|
| 10 |
+
df_ts_data = {'height': 200}
|
| 11 |
+
df_forecast = {'height': 200}
|
| 12 |
+
|
| 13 |
+
file_upload_data = {'height': 80}
|
| 14 |
+
file_upload_model_data = {'height': 80}
|
| 15 |
+
|
| 16 |
+
slider_forecast_horizon = {'label': '', 'minimum': 1, 'step': 1, 'interactive':True}
|
model.csv
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
,sku,best_model,characteristic,RMSE
|
| 2 |
+
0,sku-0,fft_plus,continuous,20.29778313018444
|
| 3 |
+
1,sku-1,holt_winters_plus,continuous,48.49842843820416
|
| 4 |
+
2,sku-2,prophet_plus,fuzzy,39.28846310729568
|
| 5 |
+
3,sku-3,prophet_plus,fuzzy_transient,14.593201789242087
|
| 6 |
+
4,sku-4,prophet_plus,fuzzy,10.7747925198657
|
| 7 |
+
5,sku-5,prophet_plus,fuzzy,28.33012802382216
|
| 8 |
+
6,sku-6,ceif_plus,fuzzy,37.84242038358283
|
| 9 |
+
7,sku-7,holt_winters_plus,continuous,15.959770854065722
|
| 10 |
+
8,sku-8,prophet_plus,fuzzy,13.778467035419936
|
| 11 |
+
9,sku-9,prophet_plus,fuzzy,12.843706019437128
|
notebooks/res.txt
ADDED
|
File without changes
|
notebooks/test.ipynb
ADDED
|
@@ -0,0 +1,828 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [
|
| 8 |
+
{
|
| 9 |
+
"name": "stderr",
|
| 10 |
+
"output_type": "stream",
|
| 11 |
+
"text": [
|
| 12 |
+
"/Users/qiaozhang/miniconda3/envs/demand-forecasting/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 13 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"name": "stdout",
|
| 18 |
+
"output_type": "stream",
|
| 19 |
+
"text": [
|
| 20 |
+
"apikey still available, logged in\n"
|
| 21 |
+
]
|
| 22 |
+
}
|
| 23 |
+
],
|
| 24 |
+
"source": [
|
| 25 |
+
"# To call functions outside of this folder\n",
|
| 26 |
+
"import sys \n",
|
| 27 |
+
"sys.path.insert(0, '..')\n",
|
| 28 |
+
"\n",
|
| 29 |
+
"# Load libraries \n",
|
| 30 |
+
"import pandas as pd\n",
|
| 31 |
+
"import json\n",
|
| 32 |
+
"import matplotlib.pyplot as plt\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"# Load main demand forecasting class\n",
|
| 35 |
+
"from src.main import DemandForecasting\n",
|
| 36 |
+
"\n",
|
| 37 |
+
"df = DemandForecasting()"
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"cell_type": "code",
|
| 42 |
+
"execution_count": 2,
|
| 43 |
+
"metadata": {},
|
| 44 |
+
"outputs": [],
|
| 45 |
+
"source": [
|
| 46 |
+
"ts = pd.read_csv('../data/fuzzy.csv')"
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "code",
|
| 51 |
+
"execution_count": 3,
|
| 52 |
+
"metadata": {},
|
| 53 |
+
"outputs": [
|
| 54 |
+
{
|
| 55 |
+
"name": "stdout",
|
| 56 |
+
"output_type": "stream",
|
| 57 |
+
"text": [
|
| 58 |
+
"Start profiling, note, predictability been disabled\n",
|
| 59 |
+
"Change point detection\n",
|
| 60 |
+
"callindg model: prophet_plus\n",
|
| 61 |
+
"has_idsc_model\n"
|
| 62 |
+
]
|
| 63 |
+
}
|
| 64 |
+
],
|
| 65 |
+
"source": [
|
| 66 |
+
"# Step 1 - evaluate RMSE\n",
|
| 67 |
+
"# res = df.forecast(ts, 10, model='all', run_test=False, characteristic='fuzzy')\n",
|
| 68 |
+
"\n",
|
| 69 |
+
"# Step 2 - forecast\n",
|
| 70 |
+
"res = df.forecast(ts, 30, model='prophet_plus', characteristic='fuzzy')"
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "code",
|
| 75 |
+
"execution_count": 4,
|
| 76 |
+
"metadata": {},
|
| 77 |
+
"outputs": [
|
| 78 |
+
{
|
| 79 |
+
"data": {
|
| 80 |
+
"text/plain": [
|
| 81 |
+
"{'characteristic': 'fuzzy',\n",
|
| 82 |
+
" 'forecast': [{'model': 'prophet_plus',\n",
|
| 83 |
+
" 'forecast': {'datetime': DatetimeIndex(['2023-04-23', '2023-04-30', '2023-05-07', '2023-05-14',\n",
|
| 84 |
+
" '2023-05-21', '2023-05-28', '2023-06-04', '2023-06-11',\n",
|
| 85 |
+
" '2023-06-18', '2023-06-25', '2023-07-02', '2023-07-09',\n",
|
| 86 |
+
" '2023-07-16', '2023-07-23', '2023-07-30', '2023-08-06',\n",
|
| 87 |
+
" '2023-08-13', '2023-08-20', '2023-08-27', '2023-09-03',\n",
|
| 88 |
+
" '2023-09-10', '2023-09-17', '2023-09-24', '2023-10-01',\n",
|
| 89 |
+
" '2023-10-08', '2023-10-15', '2023-10-22', '2023-10-29',\n",
|
| 90 |
+
" '2023-11-05', '2023-11-12'],\n",
|
| 91 |
+
" dtype='datetime64[ns]', freq='W-SUN'),\n",
|
| 92 |
+
" 'y': dict_values([0, 18, 12, 10, 12, 0, 11, 0, 11, 13, 0, 18, 12, 10, 12, 0, 11, 0, 11, 13, 0, 18, 12, 10, 12, 0, 12, 0, 11, 13])},\n",
|
| 93 |
+
" 'raw': {'prediction_result': {'predicted_value': {'2023-04-24': 0,\n",
|
| 94 |
+
" '2023-04-25': 18,\n",
|
| 95 |
+
" '2023-04-26': 12,\n",
|
| 96 |
+
" '2023-04-27': 10,\n",
|
| 97 |
+
" '2023-04-28': 12,\n",
|
| 98 |
+
" '2023-04-29': 0,\n",
|
| 99 |
+
" '2023-04-30': 11,\n",
|
| 100 |
+
" '2023-05-01': 0,\n",
|
| 101 |
+
" '2023-05-02': 11,\n",
|
| 102 |
+
" '2023-05-03': 13,\n",
|
| 103 |
+
" '2023-05-04': 0,\n",
|
| 104 |
+
" '2023-05-05': 18,\n",
|
| 105 |
+
" '2023-05-06': 12,\n",
|
| 106 |
+
" '2023-05-07': 10,\n",
|
| 107 |
+
" '2023-05-08': 12,\n",
|
| 108 |
+
" '2023-05-09': 0,\n",
|
| 109 |
+
" '2023-05-10': 11,\n",
|
| 110 |
+
" '2023-05-11': 0,\n",
|
| 111 |
+
" '2023-05-12': 11,\n",
|
| 112 |
+
" '2023-05-13': 13,\n",
|
| 113 |
+
" '2023-05-14': 0,\n",
|
| 114 |
+
" '2023-05-15': 18,\n",
|
| 115 |
+
" '2023-05-16': 12,\n",
|
| 116 |
+
" '2023-05-17': 10,\n",
|
| 117 |
+
" '2023-05-18': 12,\n",
|
| 118 |
+
" '2023-05-19': 0,\n",
|
| 119 |
+
" '2023-05-20': 12,\n",
|
| 120 |
+
" '2023-05-21': 0,\n",
|
| 121 |
+
" '2023-05-22': 11,\n",
|
| 122 |
+
" '2023-05-23': 13},\n",
|
| 123 |
+
" 'interval_metrics': {'interval_rmse': 1.5164425186469757,\n",
|
| 124 |
+
" 'interval_mae': 0.9669727996291655,\n",
|
| 125 |
+
" 'interval_smape': 1.732136035567733},\n",
|
| 126 |
+
" 'quantity_metrics': {'quantity_rmse': 15.549524453161835,\n",
|
| 127 |
+
" 'quantity_mae': 9.35978138752326,\n",
|
| 128 |
+
" 'quantity_smape': 0.6888599339319311}},\n",
|
| 129 |
+
" 'request_timestamp': '2023-10-15 19:09:48',\n",
|
| 130 |
+
" 'engine_code': 'Foretell_Pred_Prophet_Intermittent'}}]}"
|
| 131 |
+
]
|
| 132 |
+
},
|
| 133 |
+
"execution_count": 4,
|
| 134 |
+
"metadata": {},
|
| 135 |
+
"output_type": "execute_result"
|
| 136 |
+
}
|
| 137 |
+
],
|
| 138 |
+
"source": [
|
| 139 |
+
"res"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": 5,
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [
|
| 147 |
+
{
|
| 148 |
+
"data": {
|
| 149 |
+
"text/html": [
|
| 150 |
+
"<div>\n",
|
| 151 |
+
"<style scoped>\n",
|
| 152 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 153 |
+
" vertical-align: middle;\n",
|
| 154 |
+
" }\n",
|
| 155 |
+
"\n",
|
| 156 |
+
" .dataframe tbody tr th {\n",
|
| 157 |
+
" vertical-align: top;\n",
|
| 158 |
+
" }\n",
|
| 159 |
+
"\n",
|
| 160 |
+
" .dataframe thead th {\n",
|
| 161 |
+
" text-align: right;\n",
|
| 162 |
+
" }\n",
|
| 163 |
+
"</style>\n",
|
| 164 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 165 |
+
" <thead>\n",
|
| 166 |
+
" <tr style=\"text-align: right;\">\n",
|
| 167 |
+
" <th></th>\n",
|
| 168 |
+
" <th>datetime</th>\n",
|
| 169 |
+
" <th>y</th>\n",
|
| 170 |
+
" </tr>\n",
|
| 171 |
+
" </thead>\n",
|
| 172 |
+
" <tbody>\n",
|
| 173 |
+
" <tr>\n",
|
| 174 |
+
" <th>0</th>\n",
|
| 175 |
+
" <td>2023-04-23</td>\n",
|
| 176 |
+
" <td>0</td>\n",
|
| 177 |
+
" </tr>\n",
|
| 178 |
+
" <tr>\n",
|
| 179 |
+
" <th>1</th>\n",
|
| 180 |
+
" <td>2023-04-30</td>\n",
|
| 181 |
+
" <td>18</td>\n",
|
| 182 |
+
" </tr>\n",
|
| 183 |
+
" <tr>\n",
|
| 184 |
+
" <th>2</th>\n",
|
| 185 |
+
" <td>2023-05-07</td>\n",
|
| 186 |
+
" <td>12</td>\n",
|
| 187 |
+
" </tr>\n",
|
| 188 |
+
" <tr>\n",
|
| 189 |
+
" <th>3</th>\n",
|
| 190 |
+
" <td>2023-05-14</td>\n",
|
| 191 |
+
" <td>10</td>\n",
|
| 192 |
+
" </tr>\n",
|
| 193 |
+
" <tr>\n",
|
| 194 |
+
" <th>4</th>\n",
|
| 195 |
+
" <td>2023-05-21</td>\n",
|
| 196 |
+
" <td>12</td>\n",
|
| 197 |
+
" </tr>\n",
|
| 198 |
+
" <tr>\n",
|
| 199 |
+
" <th>5</th>\n",
|
| 200 |
+
" <td>2023-05-28</td>\n",
|
| 201 |
+
" <td>0</td>\n",
|
| 202 |
+
" </tr>\n",
|
| 203 |
+
" <tr>\n",
|
| 204 |
+
" <th>6</th>\n",
|
| 205 |
+
" <td>2023-06-04</td>\n",
|
| 206 |
+
" <td>11</td>\n",
|
| 207 |
+
" </tr>\n",
|
| 208 |
+
" <tr>\n",
|
| 209 |
+
" <th>7</th>\n",
|
| 210 |
+
" <td>2023-06-11</td>\n",
|
| 211 |
+
" <td>0</td>\n",
|
| 212 |
+
" </tr>\n",
|
| 213 |
+
" <tr>\n",
|
| 214 |
+
" <th>8</th>\n",
|
| 215 |
+
" <td>2023-06-18</td>\n",
|
| 216 |
+
" <td>11</td>\n",
|
| 217 |
+
" </tr>\n",
|
| 218 |
+
" <tr>\n",
|
| 219 |
+
" <th>9</th>\n",
|
| 220 |
+
" <td>2023-06-25</td>\n",
|
| 221 |
+
" <td>13</td>\n",
|
| 222 |
+
" </tr>\n",
|
| 223 |
+
" <tr>\n",
|
| 224 |
+
" <th>10</th>\n",
|
| 225 |
+
" <td>2023-07-02</td>\n",
|
| 226 |
+
" <td>0</td>\n",
|
| 227 |
+
" </tr>\n",
|
| 228 |
+
" <tr>\n",
|
| 229 |
+
" <th>11</th>\n",
|
| 230 |
+
" <td>2023-07-09</td>\n",
|
| 231 |
+
" <td>18</td>\n",
|
| 232 |
+
" </tr>\n",
|
| 233 |
+
" <tr>\n",
|
| 234 |
+
" <th>12</th>\n",
|
| 235 |
+
" <td>2023-07-16</td>\n",
|
| 236 |
+
" <td>12</td>\n",
|
| 237 |
+
" </tr>\n",
|
| 238 |
+
" <tr>\n",
|
| 239 |
+
" <th>13</th>\n",
|
| 240 |
+
" <td>2023-07-23</td>\n",
|
| 241 |
+
" <td>10</td>\n",
|
| 242 |
+
" </tr>\n",
|
| 243 |
+
" <tr>\n",
|
| 244 |
+
" <th>14</th>\n",
|
| 245 |
+
" <td>2023-07-30</td>\n",
|
| 246 |
+
" <td>12</td>\n",
|
| 247 |
+
" </tr>\n",
|
| 248 |
+
" <tr>\n",
|
| 249 |
+
" <th>15</th>\n",
|
| 250 |
+
" <td>2023-08-06</td>\n",
|
| 251 |
+
" <td>0</td>\n",
|
| 252 |
+
" </tr>\n",
|
| 253 |
+
" <tr>\n",
|
| 254 |
+
" <th>16</th>\n",
|
| 255 |
+
" <td>2023-08-13</td>\n",
|
| 256 |
+
" <td>11</td>\n",
|
| 257 |
+
" </tr>\n",
|
| 258 |
+
" <tr>\n",
|
| 259 |
+
" <th>17</th>\n",
|
| 260 |
+
" <td>2023-08-20</td>\n",
|
| 261 |
+
" <td>0</td>\n",
|
| 262 |
+
" </tr>\n",
|
| 263 |
+
" <tr>\n",
|
| 264 |
+
" <th>18</th>\n",
|
| 265 |
+
" <td>2023-08-27</td>\n",
|
| 266 |
+
" <td>11</td>\n",
|
| 267 |
+
" </tr>\n",
|
| 268 |
+
" <tr>\n",
|
| 269 |
+
" <th>19</th>\n",
|
| 270 |
+
" <td>2023-09-03</td>\n",
|
| 271 |
+
" <td>13</td>\n",
|
| 272 |
+
" </tr>\n",
|
| 273 |
+
" <tr>\n",
|
| 274 |
+
" <th>20</th>\n",
|
| 275 |
+
" <td>2023-09-10</td>\n",
|
| 276 |
+
" <td>0</td>\n",
|
| 277 |
+
" </tr>\n",
|
| 278 |
+
" <tr>\n",
|
| 279 |
+
" <th>21</th>\n",
|
| 280 |
+
" <td>2023-09-17</td>\n",
|
| 281 |
+
" <td>18</td>\n",
|
| 282 |
+
" </tr>\n",
|
| 283 |
+
" <tr>\n",
|
| 284 |
+
" <th>22</th>\n",
|
| 285 |
+
" <td>2023-09-24</td>\n",
|
| 286 |
+
" <td>12</td>\n",
|
| 287 |
+
" </tr>\n",
|
| 288 |
+
" <tr>\n",
|
| 289 |
+
" <th>23</th>\n",
|
| 290 |
+
" <td>2023-10-01</td>\n",
|
| 291 |
+
" <td>10</td>\n",
|
| 292 |
+
" </tr>\n",
|
| 293 |
+
" <tr>\n",
|
| 294 |
+
" <th>24</th>\n",
|
| 295 |
+
" <td>2023-10-08</td>\n",
|
| 296 |
+
" <td>12</td>\n",
|
| 297 |
+
" </tr>\n",
|
| 298 |
+
" <tr>\n",
|
| 299 |
+
" <th>25</th>\n",
|
| 300 |
+
" <td>2023-10-15</td>\n",
|
| 301 |
+
" <td>0</td>\n",
|
| 302 |
+
" </tr>\n",
|
| 303 |
+
" <tr>\n",
|
| 304 |
+
" <th>26</th>\n",
|
| 305 |
+
" <td>2023-10-22</td>\n",
|
| 306 |
+
" <td>12</td>\n",
|
| 307 |
+
" </tr>\n",
|
| 308 |
+
" <tr>\n",
|
| 309 |
+
" <th>27</th>\n",
|
| 310 |
+
" <td>2023-10-29</td>\n",
|
| 311 |
+
" <td>0</td>\n",
|
| 312 |
+
" </tr>\n",
|
| 313 |
+
" <tr>\n",
|
| 314 |
+
" <th>28</th>\n",
|
| 315 |
+
" <td>2023-11-05</td>\n",
|
| 316 |
+
" <td>11</td>\n",
|
| 317 |
+
" </tr>\n",
|
| 318 |
+
" <tr>\n",
|
| 319 |
+
" <th>29</th>\n",
|
| 320 |
+
" <td>2023-11-12</td>\n",
|
| 321 |
+
" <td>13</td>\n",
|
| 322 |
+
" </tr>\n",
|
| 323 |
+
" </tbody>\n",
|
| 324 |
+
"</table>\n",
|
| 325 |
+
"</div>"
|
| 326 |
+
],
|
| 327 |
+
"text/plain": [
|
| 328 |
+
" datetime y\n",
|
| 329 |
+
"0 2023-04-23 0\n",
|
| 330 |
+
"1 2023-04-30 18\n",
|
| 331 |
+
"2 2023-05-07 12\n",
|
| 332 |
+
"3 2023-05-14 10\n",
|
| 333 |
+
"4 2023-05-21 12\n",
|
| 334 |
+
"5 2023-05-28 0\n",
|
| 335 |
+
"6 2023-06-04 11\n",
|
| 336 |
+
"7 2023-06-11 0\n",
|
| 337 |
+
"8 2023-06-18 11\n",
|
| 338 |
+
"9 2023-06-25 13\n",
|
| 339 |
+
"10 2023-07-02 0\n",
|
| 340 |
+
"11 2023-07-09 18\n",
|
| 341 |
+
"12 2023-07-16 12\n",
|
| 342 |
+
"13 2023-07-23 10\n",
|
| 343 |
+
"14 2023-07-30 12\n",
|
| 344 |
+
"15 2023-08-06 0\n",
|
| 345 |
+
"16 2023-08-13 11\n",
|
| 346 |
+
"17 2023-08-20 0\n",
|
| 347 |
+
"18 2023-08-27 11\n",
|
| 348 |
+
"19 2023-09-03 13\n",
|
| 349 |
+
"20 2023-09-10 0\n",
|
| 350 |
+
"21 2023-09-17 18\n",
|
| 351 |
+
"22 2023-09-24 12\n",
|
| 352 |
+
"23 2023-10-01 10\n",
|
| 353 |
+
"24 2023-10-08 12\n",
|
| 354 |
+
"25 2023-10-15 0\n",
|
| 355 |
+
"26 2023-10-22 12\n",
|
| 356 |
+
"27 2023-10-29 0\n",
|
| 357 |
+
"28 2023-11-05 11\n",
|
| 358 |
+
"29 2023-11-12 13"
|
| 359 |
+
]
|
| 360 |
+
},
|
| 361 |
+
"execution_count": 5,
|
| 362 |
+
"metadata": {},
|
| 363 |
+
"output_type": "execute_result"
|
| 364 |
+
}
|
| 365 |
+
],
|
| 366 |
+
"source": [
|
| 367 |
+
"pd.DataFrame(res['forecast'][0]['forecast'], columns=['datetime', 'y'])"
|
| 368 |
+
]
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"cell_type": "code",
|
| 372 |
+
"execution_count": 7,
|
| 373 |
+
"metadata": {},
|
| 374 |
+
"outputs": [
|
| 375 |
+
{
|
| 376 |
+
"name": "stdout",
|
| 377 |
+
"output_type": "stream",
|
| 378 |
+
"text": [
|
| 379 |
+
"prophet_plus\n"
|
| 380 |
+
]
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"ename": "KeyError",
|
| 384 |
+
"evalue": "'interm_scores'",
|
| 385 |
+
"output_type": "error",
|
| 386 |
+
"traceback": [
|
| 387 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 388 |
+
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
|
| 389 |
+
"Cell \u001b[0;32mIn[7], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[39mprint\u001b[39m(r[\u001b[39m'\u001b[39m\u001b[39mmodel\u001b[39m\u001b[39m'\u001b[39m])\n\u001b[1;32m 3\u001b[0m \u001b[39m# print(r['RMSE'])\u001b[39;00m\n\u001b[1;32m 4\u001b[0m \u001b[39m# print(r['order_quantity_RMSE'])\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m \u001b[39mprint\u001b[39m(r[\u001b[39m'\u001b[39;49m\u001b[39minterm_scores\u001b[39;49m\u001b[39m'\u001b[39;49m])\n\u001b[1;32m 6\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39m'\u001b[39m\u001b[39m________\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[1;32m 7\u001b[0m r[\u001b[39m'\u001b[39m\u001b[39mtest\u001b[39m\u001b[39m'\u001b[39m]\u001b[39m.\u001b[39mplot(title\u001b[39m=\u001b[39mr[\u001b[39m'\u001b[39m\u001b[39mmodel\u001b[39m\u001b[39m'\u001b[39m] \u001b[39m+\u001b[39m \u001b[39m'\u001b[39m\u001b[39m-test\u001b[39m\u001b[39m'\u001b[39m)\n",
|
| 390 |
+
"\u001b[0;31mKeyError\u001b[0m: 'interm_scores'"
|
| 391 |
+
]
|
| 392 |
+
}
|
| 393 |
+
],
|
| 394 |
+
"source": [
|
| 395 |
+
"for r in res['forecast']:\n",
|
| 396 |
+
" print(r['model'])\n",
|
| 397 |
+
" # print(r['RMSE'])\n",
|
| 398 |
+
" # print(r['order_quantity_RMSE'])\n",
|
| 399 |
+
" print(r['interm_scores'])\n",
|
| 400 |
+
" print('________')\n",
|
| 401 |
+
" r['test'].plot(title=r['model'] + '-test')"
|
| 402 |
+
]
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"cell_type": "code",
|
| 406 |
+
"execution_count": 10,
|
| 407 |
+
"metadata": {},
|
| 408 |
+
"outputs": [
|
| 409 |
+
{
|
| 410 |
+
"ename": "IndexError",
|
| 411 |
+
"evalue": "list index out of range",
|
| 412 |
+
"output_type": "error",
|
| 413 |
+
"traceback": [
|
| 414 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 415 |
+
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
|
| 416 |
+
"\u001b[1;32m/Users/qiaozhang/Desktop/sentient-dev/snr_demand-forecasting/notebooks/test.ipynb Cell 10\u001b[0m line \u001b[0;36m1\n\u001b[0;32m----> <a href='vscode-notebook-cell:/Users/qiaozhang/Desktop/sentient-dev/snr_demand-forecasting/notebooks/test.ipynb#X12sZmlsZQ%3D%3D?line=0'>1</a>\u001b[0m res[\u001b[39m4\u001b[39;49m][\u001b[39m'\u001b[39m\u001b[39mtest_raw\u001b[39m\u001b[39m'\u001b[39m]\n",
|
| 417 |
+
"\u001b[0;31mIndexError\u001b[0m: list index out of range"
|
| 418 |
+
]
|
| 419 |
+
}
|
| 420 |
+
],
|
| 421 |
+
"source": [
|
| 422 |
+
"res[4]['test_raw']"
|
| 423 |
+
]
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"cell_type": "code",
|
| 427 |
+
"execution_count": null,
|
| 428 |
+
"metadata": {},
|
| 429 |
+
"outputs": [
|
| 430 |
+
{
|
| 431 |
+
"name": "stderr",
|
| 432 |
+
"output_type": "stream",
|
| 433 |
+
"text": [
|
| 434 |
+
"11:17:02 - cmdstanpy - INFO - Chain [1] start processing\n",
|
| 435 |
+
"11:17:02 - cmdstanpy - INFO - Chain [1] done processing\n"
|
| 436 |
+
]
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"name": "stdout",
|
| 440 |
+
"output_type": "stream",
|
| 441 |
+
"text": [
|
| 442 |
+
"callindg model: prophet\n",
|
| 443 |
+
" ds trend yhat_lower yhat_upper trend_lower trend_upper \\\n",
|
| 444 |
+
"260 2023-04-30 8.921487 -7.908574 21.012119 8.921487 8.921487 \n",
|
| 445 |
+
"261 2023-05-07 8.931226 -6.567967 22.604438 8.931226 8.931226 \n",
|
| 446 |
+
"262 2023-05-14 8.940965 -8.081720 21.526347 8.940905 8.941007 \n",
|
| 447 |
+
"263 2023-05-21 8.950703 -9.985601 19.493650 8.950543 8.950831 \n",
|
| 448 |
+
"264 2023-05-28 8.960442 -8.813073 20.526393 8.960129 8.960702 \n",
|
| 449 |
+
"265 2023-06-04 8.970180 -6.966844 23.563550 8.969667 8.970604 \n",
|
| 450 |
+
"266 2023-06-11 8.979919 -4.608789 25.118377 8.979231 8.980524 \n",
|
| 451 |
+
"267 2023-06-18 8.989657 -4.180691 25.485273 8.988761 8.990488 \n",
|
| 452 |
+
"268 2023-06-25 8.999396 -4.686704 24.961761 8.998250 9.000445 \n",
|
| 453 |
+
"269 2023-07-02 9.009134 -5.880469 23.125865 9.007781 9.010505 \n",
|
| 454 |
+
"270 2023-07-09 9.018873 -5.090580 23.769587 9.017264 9.020526 \n",
|
| 455 |
+
"271 2023-07-16 9.028611 -4.761036 25.748781 9.026645 9.030525 \n",
|
| 456 |
+
"272 2023-07-23 9.038350 -4.907963 24.736967 9.036085 9.040552 \n",
|
| 457 |
+
"273 2023-07-30 9.048088 -4.570258 23.745148 9.045508 9.050722 \n",
|
| 458 |
+
"274 2023-08-06 9.057827 -5.827376 22.932313 9.054935 9.060731 \n",
|
| 459 |
+
"275 2023-08-13 9.067565 -4.220147 24.956558 9.064331 9.070780 \n",
|
| 460 |
+
"276 2023-08-20 9.077304 -0.864349 29.034652 9.073628 9.081006 \n",
|
| 461 |
+
"277 2023-08-27 9.087042 3.470909 32.343086 9.082870 9.091054 \n",
|
| 462 |
+
"278 2023-09-03 9.096781 1.198728 30.637736 9.092259 9.101139 \n",
|
| 463 |
+
"279 2023-09-10 9.106520 -1.561115 27.531066 9.101419 9.111209 \n",
|
| 464 |
+
"280 2023-09-17 9.116258 -6.184726 24.202682 9.110719 9.121436 \n",
|
| 465 |
+
"281 2023-09-24 9.125997 -4.579644 23.752222 9.120080 9.131616 \n",
|
| 466 |
+
"282 2023-10-01 9.135735 -5.178492 25.012735 9.129285 9.141805 \n",
|
| 467 |
+
"283 2023-10-08 9.145474 -5.666373 22.611290 9.138581 9.152031 \n",
|
| 468 |
+
"284 2023-10-15 9.155212 -6.963614 21.842661 9.147855 9.162345 \n",
|
| 469 |
+
"285 2023-10-22 9.164951 -6.763386 23.055701 9.157131 9.172489 \n",
|
| 470 |
+
"286 2023-10-29 9.174689 -5.170320 24.787756 9.166426 9.182695 \n",
|
| 471 |
+
"287 2023-11-05 9.184428 -2.337336 27.885403 9.175632 9.192803 \n",
|
| 472 |
+
"288 2023-11-12 9.194166 -1.331529 29.762405 9.184876 9.203052 \n",
|
| 473 |
+
"289 2023-11-19 9.203905 -2.375162 27.729052 9.194147 9.213316 \n",
|
| 474 |
+
"\n",
|
| 475 |
+
" additive_terms additive_terms_lower additive_terms_upper yearly \\\n",
|
| 476 |
+
"260 -2.521643 -2.521643 -2.521643 -2.521643 \n",
|
| 477 |
+
"261 -1.628433 -1.628433 -1.628433 -1.628433 \n",
|
| 478 |
+
"262 -2.544671 -2.544671 -2.544671 -2.544671 \n",
|
| 479 |
+
"263 -3.980016 -3.980016 -3.980016 -3.980016 \n",
|
| 480 |
+
"264 -3.655285 -3.655285 -3.655285 -3.655285 \n",
|
| 481 |
+
"265 -1.186016 -1.186016 -1.186016 -1.186016 \n",
|
| 482 |
+
"266 1.337140 1.337140 1.337140 1.337140 \n",
|
| 483 |
+
"267 1.789455 1.789455 1.789455 1.789455 \n",
|
| 484 |
+
"268 0.451573 0.451573 0.451573 0.451573 \n",
|
| 485 |
+
"269 -0.531397 -0.531397 -0.531397 -0.531397 \n",
|
| 486 |
+
"270 0.094160 0.094160 0.094160 0.094160 \n",
|
| 487 |
+
"271 1.226812 1.226812 1.226812 1.226812 \n",
|
| 488 |
+
"272 1.064831 1.064831 1.064831 1.064831 \n",
|
| 489 |
+
"273 -0.269867 -0.269867 -0.269867 -0.269867 \n",
|
| 490 |
+
"274 -0.559179 -0.559179 -0.559179 -0.559179 \n",
|
| 491 |
+
"275 1.853473 1.853473 1.853473 1.853473 \n",
|
| 492 |
+
"276 5.774049 5.774049 5.774049 5.774049 \n",
|
| 493 |
+
"277 8.102311 8.102311 8.102311 8.102311 \n",
|
| 494 |
+
"278 7.022347 7.022347 7.022347 7.022347 \n",
|
| 495 |
+
"279 3.785691 3.785691 3.785691 3.785691 \n",
|
| 496 |
+
"280 1.145548 1.145548 1.145548 1.145548 \n",
|
| 497 |
+
"281 0.423666 0.423666 0.423666 0.423666 \n",
|
| 498 |
+
"282 0.590499 0.590499 0.590499 0.590499 \n",
|
| 499 |
+
"283 0.116618 0.116618 0.116618 0.116618 \n",
|
| 500 |
+
"284 -0.921952 -0.921952 -0.921952 -0.921952 \n",
|
| 501 |
+
"285 -1.023065 -1.023065 -1.023065 -1.023065 \n",
|
| 502 |
+
"286 0.705503 0.705503 0.705503 0.705503 \n",
|
| 503 |
+
"287 3.244306 3.244306 3.244306 3.244306 \n",
|
| 504 |
+
"288 4.575861 4.575861 4.575861 4.575861 \n",
|
| 505 |
+
"289 3.595682 3.595682 3.595682 3.595682 \n",
|
| 506 |
+
"\n",
|
| 507 |
+
" yearly_lower yearly_upper multiplicative_terms \\\n",
|
| 508 |
+
"260 -2.521643 -2.521643 0.0 \n",
|
| 509 |
+
"261 -1.628433 -1.628433 0.0 \n",
|
| 510 |
+
"262 -2.544671 -2.544671 0.0 \n",
|
| 511 |
+
"263 -3.980016 -3.980016 0.0 \n",
|
| 512 |
+
"264 -3.655285 -3.655285 0.0 \n",
|
| 513 |
+
"265 -1.186016 -1.186016 0.0 \n",
|
| 514 |
+
"266 1.337140 1.337140 0.0 \n",
|
| 515 |
+
"267 1.789455 1.789455 0.0 \n",
|
| 516 |
+
"268 0.451573 0.451573 0.0 \n",
|
| 517 |
+
"269 -0.531397 -0.531397 0.0 \n",
|
| 518 |
+
"270 0.094160 0.094160 0.0 \n",
|
| 519 |
+
"271 1.226812 1.226812 0.0 \n",
|
| 520 |
+
"272 1.064831 1.064831 0.0 \n",
|
| 521 |
+
"273 -0.269867 -0.269867 0.0 \n",
|
| 522 |
+
"274 -0.559179 -0.559179 0.0 \n",
|
| 523 |
+
"275 1.853473 1.853473 0.0 \n",
|
| 524 |
+
"276 5.774049 5.774049 0.0 \n",
|
| 525 |
+
"277 8.102311 8.102311 0.0 \n",
|
| 526 |
+
"278 7.022347 7.022347 0.0 \n",
|
| 527 |
+
"279 3.785691 3.785691 0.0 \n",
|
| 528 |
+
"280 1.145548 1.145548 0.0 \n",
|
| 529 |
+
"281 0.423666 0.423666 0.0 \n",
|
| 530 |
+
"282 0.590499 0.590499 0.0 \n",
|
| 531 |
+
"283 0.116618 0.116618 0.0 \n",
|
| 532 |
+
"284 -0.921952 -0.921952 0.0 \n",
|
| 533 |
+
"285 -1.023065 -1.023065 0.0 \n",
|
| 534 |
+
"286 0.705503 0.705503 0.0 \n",
|
| 535 |
+
"287 3.244306 3.244306 0.0 \n",
|
| 536 |
+
"288 4.575861 4.575861 0.0 \n",
|
| 537 |
+
"289 3.595682 3.595682 0.0 \n",
|
| 538 |
+
"\n",
|
| 539 |
+
" multiplicative_terms_lower multiplicative_terms_upper yhat \n",
|
| 540 |
+
"260 0.0 0.0 6.399845 \n",
|
| 541 |
+
"261 0.0 0.0 7.302793 \n",
|
| 542 |
+
"262 0.0 0.0 6.396294 \n",
|
| 543 |
+
"263 0.0 0.0 4.970687 \n",
|
| 544 |
+
"264 0.0 0.0 5.305157 \n",
|
| 545 |
+
"265 0.0 0.0 7.784164 \n",
|
| 546 |
+
"266 0.0 0.0 10.317059 \n",
|
| 547 |
+
"267 0.0 0.0 10.779112 \n",
|
| 548 |
+
"268 0.0 0.0 9.450969 \n",
|
| 549 |
+
"269 0.0 0.0 8.477737 \n",
|
| 550 |
+
"270 0.0 0.0 9.113033 \n",
|
| 551 |
+
"271 0.0 0.0 10.255423 \n",
|
| 552 |
+
"272 0.0 0.0 10.103181 \n",
|
| 553 |
+
"273 0.0 0.0 8.778221 \n",
|
| 554 |
+
"274 0.0 0.0 8.498648 \n",
|
| 555 |
+
"275 0.0 0.0 10.921038 \n",
|
| 556 |
+
"276 0.0 0.0 14.851353 \n",
|
| 557 |
+
"277 0.0 0.0 17.189353 \n",
|
| 558 |
+
"278 0.0 0.0 16.119128 \n",
|
| 559 |
+
"279 0.0 0.0 12.892211 \n",
|
| 560 |
+
"280 0.0 0.0 10.261806 \n",
|
| 561 |
+
"281 0.0 0.0 9.549662 \n",
|
| 562 |
+
"282 0.0 0.0 9.726234 \n",
|
| 563 |
+
"283 0.0 0.0 9.262091 \n",
|
| 564 |
+
"284 0.0 0.0 8.233260 \n",
|
| 565 |
+
"285 0.0 0.0 8.141886 \n",
|
| 566 |
+
"286 0.0 0.0 9.880192 \n",
|
| 567 |
+
"287 0.0 0.0 12.428733 \n",
|
| 568 |
+
"288 0.0 0.0 13.770027 \n",
|
| 569 |
+
"289 0.0 0.0 12.799587 \n"
|
| 570 |
+
]
|
| 571 |
+
}
|
| 572 |
+
],
|
| 573 |
+
"source": [
|
| 574 |
+
"# Step 2 - forecast\n",
|
| 575 |
+
"res = df.forecast(ts, 30, model='prophet')"
|
| 576 |
+
]
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"cell_type": "code",
|
| 580 |
+
"execution_count": null,
|
| 581 |
+
"metadata": {},
|
| 582 |
+
"outputs": [
|
| 583 |
+
{
|
| 584 |
+
"data": {
|
| 585 |
+
"text/html": [
|
| 586 |
+
"<div>\n",
|
| 587 |
+
"<style scoped>\n",
|
| 588 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 589 |
+
" vertical-align: middle;\n",
|
| 590 |
+
" }\n",
|
| 591 |
+
"\n",
|
| 592 |
+
" .dataframe tbody tr th {\n",
|
| 593 |
+
" vertical-align: top;\n",
|
| 594 |
+
" }\n",
|
| 595 |
+
"\n",
|
| 596 |
+
" .dataframe thead th {\n",
|
| 597 |
+
" text-align: right;\n",
|
| 598 |
+
" }\n",
|
| 599 |
+
"</style>\n",
|
| 600 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 601 |
+
" <thead>\n",
|
| 602 |
+
" <tr style=\"text-align: right;\">\n",
|
| 603 |
+
" <th></th>\n",
|
| 604 |
+
" <th>y</th>\n",
|
| 605 |
+
" </tr>\n",
|
| 606 |
+
" </thead>\n",
|
| 607 |
+
" <tbody>\n",
|
| 608 |
+
" <tr>\n",
|
| 609 |
+
" <th>2023-04-23</th>\n",
|
| 610 |
+
" <td>6.399845</td>\n",
|
| 611 |
+
" </tr>\n",
|
| 612 |
+
" <tr>\n",
|
| 613 |
+
" <th>2023-04-30</th>\n",
|
| 614 |
+
" <td>7.302793</td>\n",
|
| 615 |
+
" </tr>\n",
|
| 616 |
+
" <tr>\n",
|
| 617 |
+
" <th>2023-05-07</th>\n",
|
| 618 |
+
" <td>6.396294</td>\n",
|
| 619 |
+
" </tr>\n",
|
| 620 |
+
" <tr>\n",
|
| 621 |
+
" <th>2023-05-14</th>\n",
|
| 622 |
+
" <td>4.970687</td>\n",
|
| 623 |
+
" </tr>\n",
|
| 624 |
+
" <tr>\n",
|
| 625 |
+
" <th>2023-05-21</th>\n",
|
| 626 |
+
" <td>5.305157</td>\n",
|
| 627 |
+
" </tr>\n",
|
| 628 |
+
" <tr>\n",
|
| 629 |
+
" <th>2023-05-28</th>\n",
|
| 630 |
+
" <td>7.784164</td>\n",
|
| 631 |
+
" </tr>\n",
|
| 632 |
+
" <tr>\n",
|
| 633 |
+
" <th>2023-06-04</th>\n",
|
| 634 |
+
" <td>10.317059</td>\n",
|
| 635 |
+
" </tr>\n",
|
| 636 |
+
" <tr>\n",
|
| 637 |
+
" <th>2023-06-11</th>\n",
|
| 638 |
+
" <td>10.779112</td>\n",
|
| 639 |
+
" </tr>\n",
|
| 640 |
+
" <tr>\n",
|
| 641 |
+
" <th>2023-06-18</th>\n",
|
| 642 |
+
" <td>9.450969</td>\n",
|
| 643 |
+
" </tr>\n",
|
| 644 |
+
" <tr>\n",
|
| 645 |
+
" <th>2023-06-25</th>\n",
|
| 646 |
+
" <td>8.477737</td>\n",
|
| 647 |
+
" </tr>\n",
|
| 648 |
+
" <tr>\n",
|
| 649 |
+
" <th>2023-07-02</th>\n",
|
| 650 |
+
" <td>9.113033</td>\n",
|
| 651 |
+
" </tr>\n",
|
| 652 |
+
" <tr>\n",
|
| 653 |
+
" <th>2023-07-09</th>\n",
|
| 654 |
+
" <td>10.255423</td>\n",
|
| 655 |
+
" </tr>\n",
|
| 656 |
+
" <tr>\n",
|
| 657 |
+
" <th>2023-07-16</th>\n",
|
| 658 |
+
" <td>10.103181</td>\n",
|
| 659 |
+
" </tr>\n",
|
| 660 |
+
" <tr>\n",
|
| 661 |
+
" <th>2023-07-23</th>\n",
|
| 662 |
+
" <td>8.778221</td>\n",
|
| 663 |
+
" </tr>\n",
|
| 664 |
+
" <tr>\n",
|
| 665 |
+
" <th>2023-07-30</th>\n",
|
| 666 |
+
" <td>8.498648</td>\n",
|
| 667 |
+
" </tr>\n",
|
| 668 |
+
" <tr>\n",
|
| 669 |
+
" <th>2023-08-06</th>\n",
|
| 670 |
+
" <td>10.921038</td>\n",
|
| 671 |
+
" </tr>\n",
|
| 672 |
+
" <tr>\n",
|
| 673 |
+
" <th>2023-08-13</th>\n",
|
| 674 |
+
" <td>14.851353</td>\n",
|
| 675 |
+
" </tr>\n",
|
| 676 |
+
" <tr>\n",
|
| 677 |
+
" <th>2023-08-20</th>\n",
|
| 678 |
+
" <td>17.189353</td>\n",
|
| 679 |
+
" </tr>\n",
|
| 680 |
+
" <tr>\n",
|
| 681 |
+
" <th>2023-08-27</th>\n",
|
| 682 |
+
" <td>16.119128</td>\n",
|
| 683 |
+
" </tr>\n",
|
| 684 |
+
" <tr>\n",
|
| 685 |
+
" <th>2023-09-03</th>\n",
|
| 686 |
+
" <td>12.892211</td>\n",
|
| 687 |
+
" </tr>\n",
|
| 688 |
+
" <tr>\n",
|
| 689 |
+
" <th>2023-09-10</th>\n",
|
| 690 |
+
" <td>10.261806</td>\n",
|
| 691 |
+
" </tr>\n",
|
| 692 |
+
" <tr>\n",
|
| 693 |
+
" <th>2023-09-17</th>\n",
|
| 694 |
+
" <td>9.549662</td>\n",
|
| 695 |
+
" </tr>\n",
|
| 696 |
+
" <tr>\n",
|
| 697 |
+
" <th>2023-09-24</th>\n",
|
| 698 |
+
" <td>9.726234</td>\n",
|
| 699 |
+
" </tr>\n",
|
| 700 |
+
" <tr>\n",
|
| 701 |
+
" <th>2023-10-01</th>\n",
|
| 702 |
+
" <td>9.262091</td>\n",
|
| 703 |
+
" </tr>\n",
|
| 704 |
+
" <tr>\n",
|
| 705 |
+
" <th>2023-10-08</th>\n",
|
| 706 |
+
" <td>8.233260</td>\n",
|
| 707 |
+
" </tr>\n",
|
| 708 |
+
" <tr>\n",
|
| 709 |
+
" <th>2023-10-15</th>\n",
|
| 710 |
+
" <td>8.141886</td>\n",
|
| 711 |
+
" </tr>\n",
|
| 712 |
+
" <tr>\n",
|
| 713 |
+
" <th>2023-10-22</th>\n",
|
| 714 |
+
" <td>9.880192</td>\n",
|
| 715 |
+
" </tr>\n",
|
| 716 |
+
" <tr>\n",
|
| 717 |
+
" <th>2023-10-29</th>\n",
|
| 718 |
+
" <td>12.428733</td>\n",
|
| 719 |
+
" </tr>\n",
|
| 720 |
+
" <tr>\n",
|
| 721 |
+
" <th>2023-11-05</th>\n",
|
| 722 |
+
" <td>13.770027</td>\n",
|
| 723 |
+
" </tr>\n",
|
| 724 |
+
" <tr>\n",
|
| 725 |
+
" <th>2023-11-12</th>\n",
|
| 726 |
+
" <td>12.799587</td>\n",
|
| 727 |
+
" </tr>\n",
|
| 728 |
+
" </tbody>\n",
|
| 729 |
+
"</table>\n",
|
| 730 |
+
"</div>"
|
| 731 |
+
],
|
| 732 |
+
"text/plain": [
|
| 733 |
+
" y\n",
|
| 734 |
+
"2023-04-23 6.399845\n",
|
| 735 |
+
"2023-04-30 7.302793\n",
|
| 736 |
+
"2023-05-07 6.396294\n",
|
| 737 |
+
"2023-05-14 4.970687\n",
|
| 738 |
+
"2023-05-21 5.305157\n",
|
| 739 |
+
"2023-05-28 7.784164\n",
|
| 740 |
+
"2023-06-04 10.317059\n",
|
| 741 |
+
"2023-06-11 10.779112\n",
|
| 742 |
+
"2023-06-18 9.450969\n",
|
| 743 |
+
"2023-06-25 8.477737\n",
|
| 744 |
+
"2023-07-02 9.113033\n",
|
| 745 |
+
"2023-07-09 10.255423\n",
|
| 746 |
+
"2023-07-16 10.103181\n",
|
| 747 |
+
"2023-07-23 8.778221\n",
|
| 748 |
+
"2023-07-30 8.498648\n",
|
| 749 |
+
"2023-08-06 10.921038\n",
|
| 750 |
+
"2023-08-13 14.851353\n",
|
| 751 |
+
"2023-08-20 17.189353\n",
|
| 752 |
+
"2023-08-27 16.119128\n",
|
| 753 |
+
"2023-09-03 12.892211\n",
|
| 754 |
+
"2023-09-10 10.261806\n",
|
| 755 |
+
"2023-09-17 9.549662\n",
|
| 756 |
+
"2023-09-24 9.726234\n",
|
| 757 |
+
"2023-10-01 9.262091\n",
|
| 758 |
+
"2023-10-08 8.233260\n",
|
| 759 |
+
"2023-10-15 8.141886\n",
|
| 760 |
+
"2023-10-22 9.880192\n",
|
| 761 |
+
"2023-10-29 12.428733\n",
|
| 762 |
+
"2023-11-05 13.770027\n",
|
| 763 |
+
"2023-11-12 12.799587"
|
| 764 |
+
]
|
| 765 |
+
},
|
| 766 |
+
"execution_count": 17,
|
| 767 |
+
"metadata": {},
|
| 768 |
+
"output_type": "execute_result"
|
| 769 |
+
}
|
| 770 |
+
],
|
| 771 |
+
"source": [
|
| 772 |
+
"res[0]['forecast']"
|
| 773 |
+
]
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"cell_type": "code",
|
| 777 |
+
"execution_count": null,
|
| 778 |
+
"metadata": {},
|
| 779 |
+
"outputs": [
|
| 780 |
+
{
|
| 781 |
+
"data": {
|
| 782 |
+
"text/plain": [
|
| 783 |
+
"<Axes: title={'center': 'forecasted'}>"
|
| 784 |
+
]
|
| 785 |
+
},
|
| 786 |
+
"execution_count": 18,
|
| 787 |
+
"metadata": {},
|
| 788 |
+
"output_type": "execute_result"
|
| 789 |
+
},
|
| 790 |
+
{
|
| 791 |
+
"data": {
|
| 792 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHBCAYAAADJgdkTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABpC0lEQVR4nO3dd3hTZfsH8O9J0qZN96B7ssoo0LKXDNkCCuJAcCCi+Ip74qsMJ4Kv/hy8goOlAo4XRVw4UJbMMsoe3Zvu3aZNcn5/pAktFGhLkpPx/VxXrssmJ+fcibS58zz3cz+CKIoiiIiIiCxEJnUARERE5FiYfBAREZFFMfkgIiIii2LyQURERBbF5IOIiIgsiskHERERWRSTDyIiIrIoJh9ERERkUUw+iIiIyKKYfBDZka+//hrdu3eHq6srBEHA0aNHpQ7JbH755RcsXrzYLOceMWIERowYYZZzExGTDyK7UVBQgHvuuQcdOnTA1q1bsXfvXnTu3FnqsMzml19+wSuvvCJ1GETUBgqpAyAi0zh37hzq6+tx9913Y/jw4dd9vurqaqhUKhNERkTUFEc+iOzArFmzMHToUADAnXfeCUEQjNMGW7ZswaBBg6BSqeDh4YExY8Zg7969TZ6/ePFiCIKAw4cP47bbboOPjw86dOgAABBFER999BHi4uLg6uoKHx8f3HbbbUhJSbksjq1bt2LUqFHw8vKCSqVC165dsWTJEuPjCQkJmD59OqKiouDq6oqoqCjcddddSE9Pb3Ke6upqPPvss4iOjoaLiwt8fX3Rt29fbNy40fh6//vf/wIABEEw3tLS0loVsyiKWLZsGSIjI+Hi4oLevXvj119/beP/BSJqKY58ENmBBQsWoH///pg3bx7efPNNjBw5Ep6entiwYQNmzpyJsWPHYuPGjVCr1Vi2bBlGjBiBbdu2GRMWg1tvvRXTp0/Hww8/jKqqKgDA3LlzsXbtWjz++ONYunQpiouL8eqrr2Lw4MFITExEYGAgAGDVqlV48MEHMXz4cKxcuRIBAQE4d+4cTpw4YTx/WloaYmJiMH36dPj6+iI3NxcrVqxAv379cOrUKfj7+wMAnn76aXzxxRd4/fXXER8fj6qqKpw4cQJFRUXG11tVVYX//e9/TRKp4ODgVsX8yiuv4JVXXsEDDzyA2267DZmZmXjwwQeh1WoRExNjpv9bRASRiOzC33//LQIQv/32W1EURVGr1YohISFijx49RK1WazyuoqJCDAgIEAcPHmy8b9GiRSIAceHChU3OuXfvXhGA+M477zS5PzMzU3R1dRWff/554zk9PT3FoUOHijqdrsUxazQasbKyUnRzcxPff/994/2xsbHilClTrvrcefPmic39CWtpzCUlJaKLi4s4derUJsf9888/IgBx+PDhLX4dRNQ6nHYhslNnz55FTk4O7rnnHshkF3/V3d3dMW3aNOzbtw/V1dVNnjNt2rQmP//0008QBAF33303NBqN8RYUFIRevXph+/btAIA9e/agvLwcjzzyCARBuGJMlZWVeOGFF9CxY0coFAooFAq4u7ujqqoKp0+fNh7Xv39//Prrr5g/fz62b9+OmpqaFr/ulsa8d+9e1NbWYubMmU2eP3jwYERGRrb4ekTUepx2IbJThikKw1REYyEhIdDpdCgpKWlSVHrpsRcuXIAoisZpiku1b98egH6lDQCEhYVdNaYZM2Zg27ZtWLBgAfr16wdPT08IgoCbbrqpSYLxwQcfICwsDF9//TWWLl0KFxcXjBs3Dm+//TY6dep01Wu0NGbD+xMUFHTZMc3dR0Smw+SDyE75+fkBAHJzcy97LCcnBzKZDD4+Pk3uv3TUwt/fH4IgYNeuXVAqlZedx3Bfu3btAABZWVlXjKesrAw//fQTFi1ahPnz5xvvV6vVKC4ubnKsm5ubsR7jwoULxlGQyZMn48yZM1d72S2O2fD+5OXlXXZMXl4eoqKirnodImo7TrsQ2amYmBiEhoZiw4YNEEXReH9VVRU2bdpkXAFzNZMmTYIoisjOzkbfvn0vu/Xo0QOAfqrCy8sLK1eubHKtxgRBgCiKlyUEn332GbRa7RVjCAwMxKxZs3DXXXfh7Nmzxqkiw3kunZJpacwDBw6Ei4sL1q9f3+T5e/bsuWz1DRGZFkc+iOyUTCbDsmXLMHPmTEyaNAlz586FWq3G22+/jdLSUrz11lvXPMeQIUPw0EMP4f7770dCQgKGDRsGNzc35ObmYvfu3ejRowf+9a9/wd3dHe+88w7mzJmD0aNH48EHH0RgYCCSkpKQmJiI5cuXw9PTE8OGDcPbb78Nf39/REVFYceOHVi1ahW8vb2bXHfAgAGYNGkSevbsCR8fH5w+fRpffPFFk4TJkEQsXboUEyZMgFwuR8+ePVscs4+PD5599lm8/vrrmDNnDm6//XZkZmZi8eLFnHYhMjcJi12JyIQuXe1isHnzZnHAgAGii4uL6ObmJo4aNUr8559/mhxjWO1SUFDQ7LlXr14tDhgwQHRzcxNdXV3FDh06iPfee6+YkJDQ5LhffvlFHD58uOjm5iaqVCqxW7du4tKlS42PZ2VlidOmTRN9fHxEDw8Pcfz48eKJEyfEyMhI8b777jMeN3/+fLFv376ij4+PqFQqxfbt24tPPfWUWFhYaDxGrVaLc+bMEdu1aycKgiACEFNTU1sVs06nE5csWSKGh4eLzs7OYs+ePcUff/xRHD58OFe7EJmRIIpXGCMlIiIiMgPWfBAREZFFMfkgIiIii2LyQURERBbF5IOIiIgsiskHERERWZTV9fnQ6XTIycmBh4fHVfeIICIiIushiiIqKioQEhLSZD+p5lhd8pGTk4Pw8HCpwyAiIqI2yMzMvOY+T1aXfHh4eADQB+/p6SlxNERERNQS5eXlCA8PN36OX43VJR+GqRZPT08mH0RERDamJSUTLDglIiIii2LyQURERBbF5IOIiIgsyupqPoiIiGyZVqtFfX291GGYhZOTE+Ry+XWfh8kHERGRCYiiiLy8PJSWlkodill5e3sjKCjounpxMfkgIiIyAUPiERAQAJVKZXeNMkVRRHV1NfLz8wEAwcHBbT4Xkw8iIqLrpNVqjYmHn5+f1OGYjaurKwAgPz8fAQEBbZ6CYcEpERHRdTLUeKhUKokjMT/Da7yeuhYmH0RERCZib1MtzTHFa2TyQURERBbF5IOIiIgsiskHERERWRSTDyIiIrIoJh9ERM34MTEHz36biPJa++xUSSQl9vkgIrqEKIp45cdTKKxUw12pwOKbu0sdEtkgURRRU6+V5NquTvIWrUr5/PPP8dRTTyEnJwdKpdJ4/7Rp0+Dm5obPP//cLPEx+SAiusTZCxUorFQDAL7Yl44ZAyLQOdBD4qjI1tTUa9Ft4W+SXPvUq+Ogcr72R/ztt9+Oxx9/HFu2bMHtt98OACgsLMRPP/2ErVu3mi0+TrsQEV1i9/lC439rdSJe++kURFGUMCIi83B1dcWMGTOwZs0a433r169HWFgYRowYYbbrcuSDiOgS/yTpk4+7B0bgm4NZ2HW+EH+cuoCx3YMkjoxsiauTHKdeHSfZtVvqwQcfRL9+/ZCdnY3Q0FCsWbMGs2bNMmvDNCYfRESN1Gl02J9aDAC4q38EPF2c8NH2ZLz+82kM69wOLq34o06OTRCEFk19SC0+Ph69evXC559/jnHjxuH48eP48ccfzXpNTrsQETVyNLMU1XVa+Lk5o2uQJ+aN7IhATyUyiquxaneq1OERmcWcOXOwZs0arF69GqNHj0Z4eLhZr8fkg4iokd0NUy6DO/pDJhPgplRg/oQuAID//p2EC+W1UoZHZBYzZ85EdnY2Pv30U8yePdvs12PyQUTUiKHeY2jHi9uiT4kLRe8Ib1TXabH01zNShUZkNp6enpg2bRrc3d0xZcoUs1+PyQcRUYPy2noczSwFAAzp6G+8XxAELJqs7/Xx3ZFsHM4okSI8IrPKzc3FzJkzm/T7MBcmH0REDfanFEOrExHlp0KYj6rJY73CvXF7nzAAwCtbTkKn49Jbsg/FxcX46quv8Ndff2HevHkWuSaTDyKiBoYpl8ajHo09Nz4G7koFErPKsOlwliVDIzKb3r17Y+7cuVi6dCliYmIsck3rXwNERGQhu431Hs0nHwEeLnh8VEe8+csZLN16FuNjg+Dh4mTJEIlMLi0tzeLX5MgHERGAvLJaJOVXQhCAQR38rnjcrMHRiPZ3Q2GlGsv/SrJghET2g8kHEREuTrn0CPWCt8r5isc5K2RYMKkrAGD1P6lIKai0SHxkGxyhDb8pXiOTDyIiNF5i2/yUS2M3dgnEiJh2qNeKeP3n0+YOjWyAk5N++q26ulriSMzP8BoNr7ktWPNBRA5PFMVr1ntcasGkbth9fif+OpOPv8/mY2RMgDlDJCsnl8vh7e2N/Px8AIBKpTLr3ihSEEUR1dXVyM/Ph7e3N+Tytm81wOSDiBxeUn4l8ivUUCpk6B3p06LndGjnjlmDo/DZ7lS89tMpDOngD2cFB5MdWVCQfuNBQwJir7y9vY2vta2YfBCRwzOMevSP9m3VxnGPj+6EzUezkVJQhc/3pmHODe3NFSLZAEEQEBwcjICAANTX10sdjlk4OTld14iHAZMPInJ4u89fvb/HlXi6OOG5cTF4YdNxvP/nedwSF4p2HubvDknWTS6Xm+QD2p5xjJCIHFq9Vod9KUUAWl7v0djtfcLRI9QLFWoN3vn9rKnDI7JLTD6IyKElZpaiqk4Lb5UTugV7tvr5MpmARZO7AQC+TsjE8awyU4dIZHeYfBCRQzPUewzp4A+ZrG2rE/pG+eKWuBCIIvDKjycdotcD0fVg8kFEDu1a+7m01PwJXeDqJEdCegm2JOaYIjQiu8Xkg4gcVqVagyMZpQCAGzpdX/IR7OWKeSM7AACW/HIG1XWa6w2PyG4x+SAih3UgtQganYgIXxXCfVXXfb45N7RHmI8r8sprsWJ7sgkiJLJPTD6IyGHtPq9f5XK9Uy4GLk5yvDxRv+/LxztTkFls/622idqCyQcROazW7OfSUuO6B2FwBz/UaXR4g/u+EDWLyQcROaT8ilqcvVABQQAGdfAz2XkFQcCiyd0hE4CtJ/OwpyHBIaKLmHwQkUMyjHp0D/GEr5uzSc8dE+SBuwdGAgBe+fEUNFqdSc9PZOtanXzs3LkTkydPRkhICARBwObNmy875vTp07j55pvh5eUFDw8PDBw4EBkZGaaIl4jIJExd73Gpp8d0hrfKCWcvVOD3UxfMcg0iW9Xq5KOqqgq9evXC8uXLm308OTkZQ4cORZcuXbB9+3YkJiZiwYIFcHFxue5giYhMQRRFs9R7NOatcsbNvUIAAEcySsxyDSJb1eqN5SZMmIAJEyZc8fGXXnoJN910E5YtW2a8r3177vRIRNYjuaAKeeW1cFbI0C/K12zX6R6ib9d+MqfcbNcgskUmrfnQ6XT4+eef0blzZ4wbNw4BAQEYMGBAs1MzBmq1GuXl5U1uRETmZBj16BflAxcn8+0+2j3EC4A++WDLdaKLTJp85Ofno7KyEm+99RbGjx+P33//HVOnTsWtt96KHTt2NPucJUuWwMvLy3gLDw83ZUhERJfZbaKW6tfSOdADTnIBZTX1yCqpMeu1iGyJyUc+AOCWW27BU089hbi4OMyfPx+TJk3CypUrm33Oiy++iLKyMuMtMzPTlCERETWh0eqwL1lfbGqueg8DZ4UMnQI8AHDqhagxkyYf/v7+UCgU6NatW5P7u3btesXVLkqlEp6enk1uRETmciy7DBVqDbxcnYzTIuYUG6r/m3Yqp8zs1yKyFSZNPpydndGvXz+cPXu2yf3nzp1DZGSkKS9FRNQm/5zXT7kM7uAHuUww+/UMCc4JjnwQGbV6tUtlZSWSkpKMP6empuLo0aPw9fVFREQEnnvuOdx5550YNmwYRo4cia1bt+LHH3/E9u3bTRk3EVGbWKrew+DiiheOfBAZtHrkIyEhAfHx8YiPjwcAPP3004iPj8fChQsBAFOnTsXKlSuxbNky9OjRA5999hk2bdqEoUOHmjZyIqJWqlJrcLih54a56z0MugZ7QhCAC+VqFFSoLXJNImvX6pGPESNGXHPJ2OzZszF79uw2B0VEZA4H0opRrxUR6u2KSD+VRa7pplQg2t8NKQVVOJlThhExARa5LpE1494uROQwDPUeQzv6QxDMX+9h0LjfBxEx+SAiB2Ko9xjayTJTLgaxIYYVL0w+iAAmH0TkIAoq1DiTVwFAv9LFki6ueGHRKRHA5IOIHMSeZP2oR7dgT/i5Ky16bcOKl/SiapTX1lv02kTWiMkHETmEfySacgEAHzdnhHq7AgBOc+qFiMkHEdk/URSx+7xl+3tcqlvD6AebjREx+SAiB5BWVI2cslo4y2XoF+UjSQxsNkZ0EZMPIrJ7hlUuvSO9oXJudXsjk4g1LLfN5sgHEZMPIrJ7u88XALBcV9PmdG/YYC6poBK19VrJ4iCyBkw+iMiuaXUi9iQXAZCu3gMAgjxd4OvmDK1OxNmGJb9EjorJBxHZtePZZaio1cDDRYEeoV6SxSEIgrHug/0+yNEx+SAiu2ZYYju4gx8Ucmn/5LHNOpEekw8ismu7G+3nIrXYUMOKFyYf5NiYfBCR3aqp0+JQegkAaes9DAwjH2dyy6HR6iSOhkg6TD6IyG4dTCtGnVaHEC8XRPu7SR0OIn1VcFcqoNbokFxQJXU4RJJh8kFEdstQ7zGkoz8EQZA4GkAmE9AtmM3GiJh8EJHd2i3hfi5XYmyzzmZj5MCYfBCRXSquqjMWdg7uYD3JB9usEzH5ICI7ZZhy6RLkgXYeSomjuSi2odfIqZxy6HSixNEQSYPJBxHZpcb1HtakY4A7nBUyVKg1yCypljocIkkw+SAiuyOKInadt756DwBwkssQE+gBgP0+yHEx+SAiu5NRXI3s0ho4yQX0j/KVOpzLXGw2xroPckxMPojI7hhWucRH+MBNqZA4mst1a2g2xhUv5KiYfBCR3THUe1hDS/XmXFzxwuSDHBOTDyKyO/tTigEAQzr6SRxJ87oGeUImAIWVauSX10odDpHFMfkgIrtSXFWHoqo6AEDXhm6i1sbVWY4O7dwBACdY90EOiMkHEdmVpPxKAECotytUztZX72FgnHph3Qc5ICYfRGRXkgv0yUeHAHeJI7k6Q7MxjnyQI2LyQUR2xTDy0bGddScf3Vh0Sg6MyQcR2ZWLIx9uEkdydd2D9SMfWSU1KKuulzgaIsti8kFEdsVWRj68VE4I93UFwGZj5HiYfBCR3aip0yK7tAaA9dd8ABdHPzj1Qo6GyQcR2Y2UwkqIIuCtcoKfm7PU4VzTxWZjHPkgx8Lkg4jsRnJBFQCgQzt3CIIgcTTXdnHFC0c+yLEw+SAiu2Er9R4GhpGPlIJK1NRpJY6GyHKYfBCR3bCVlS4GAZ4u8HdXQicCp/M4+kGOg8kHEdmNZMPIhw0UmxrEhho6nbLugxwHkw8isgtanYiUwos1H7aCO9ySI2LyQUR2IaukGnUaHZwVMoT5qKQOp8W6h3C5LTkeJh9EZBcM9R7t/d0gl1n/SheD2Ibk42xeBeq1OomjIbIMJh9EZBcMK11soblYY+G+rvBwUaBOq8P5C5VSh0NkEUw+iMguJOfbXr0HAAiCgG7BbDZGjoXJBxHZhaQC21vpYmBoNsa6D3IUTD6IyOaJonhx2qWdbfT4aIxt1snRtDr52LlzJyZPnoyQkBAIgoDNmzdf8di5c+dCEAS899571xEiEdHVFVXVoaymHoIAtPe3vZEPw4qXUznl0OlEiaMhMr9WJx9VVVXo1asXli9fftXjNm/ejP379yMkJKTNwRERtYShuViotytcneUSR9N6Hdq5QamQoapOi7SiKqnDITI7RWufMGHCBEyYMOGqx2RnZ+PRRx/Fb7/9hokTJ7Y5OCKilrDleg8AUMhl6BLsicTMUpzMKUd7GyuaJWotk9d86HQ63HPPPXjuuefQvXv3ax6vVqtRXl7e5EZE1Bq2utKlMXY6JUdi8uRj6dKlUCgUePzxx1t0/JIlS+Dl5WW8hYeHmzokIrJztj7yAVxsNsaiU3IEJk0+Dh06hPfffx9r166FILSsw+CLL76IsrIy4y0zM9OUIRGRA0g2rnSx3eSj8ciHKLLolOybSZOPXbt2IT8/HxEREVAoFFAoFEhPT8czzzyDqKioZp+jVCrh6enZ5EZE1FLVdRpkl9YAsO2Rj5ggD8hlAoqr6pBbVit1OERm1eqC06u55557MHr06Cb3jRs3Dvfccw/uv/9+U16KiAgAkFKgr/fwUTnB181Z4mjazsVJjk4B7jiTV4GTOeUI8XaVOiQis2l18lFZWYmkpCTjz6mpqTh69Ch8fX0REREBPz+/Jsc7OTkhKCgIMTEx1x8tEdElku2g3sOgW4hnQ/JRhjHdAqUOh8hsWj3tkpCQgPj4eMTHxwMAnn76acTHx2PhwoUmD46I6Frsod7DwFB0eiKbK17IsvalFOGpr48it6zGItdr9cjHiBEjWlUMlZaW1tpLEBG1mD2sdDEwFJ2e4ooXsiCNVofn/3cMGcXVKKhQ44sH+rd40UhbcW8XIrJp9tDjw6BbQ/KRU1aL4qo6iaMhR/HriTxkFFcDAHYnFWLT4WyzX5PJBxHZLI1Wh9RCffJhDyMfHi5OiPJTAWC/D7IMURTx8c5kAED7hk0ZX/vpFAoq1Ga9LpMPIrJZWSU1qNPqoFTI7GZ1SHdjszHWfZD5/ZNUhBPZ5XBxkuGrhwaiW7Anymrq8epPp8x6XSYfRGSzkhqKTdu3c4dcZt45akvpxjbrZEErd+hHPab3i0CAhwuWTusJmQD8mJiDbacvmO26TD6IyGYZltl2aBgutgexoQ0jH9mcdiHzOpFdht1JhZDLBDwwNBoA0CPMC3NuaA8AeHnzCVSqNWa5NpMPIrJZhpEPe6j3MDCseEktqkKVmf7wEwEXRz0m9QxGuK/KeP9TozsjwleF3LJavL31jFmuzeSDiGyWPTUYM/B3VyLQUwlRBE7ncuqFzCO9qAq/HM8FAMwd1qHJY67Ociy5tQcA4PN96TiUXmzy6zP5ICKbJIqiceTDHpbZNnax2RinXsg8Pt2VAp0IDO/czlhn1NiQjv64vU8YRBF4YdNxqDVak16fyQcR2aTCyjqU12ogCEC0v/3UfABNd7glMrXCSjW+TcgCAMwd3v6Kx700sSv83Z2RlF+JFduTTRoDkw8iskmGUY9wHxVcnOQSR2Na3bjclsxo3Z40qDU69ArzwqD2flc8zlvljMU3dwcA/PfvJJy/UGGyGJh8EJFNssd6D4PYUP3Ix7kLFSYf7ibHVqXW4PO96QCAh4d3uGYb9Yk9gjG6awDqtSJe2HQMWl3Lt1e5GiYfRGSTLtZ72NeUCwCEervCy9UJGp2I8xcqpQ6H7MhXBzNRVlOPaH83jO0edM3jBUHAa1Ni4a5U4HBGKb7cl26SOJh8EJFNsueRD0EQGtV9sOiUTKNeq8OqXSkAgAdvaN/ixnzBXq54YXwMAGDZ1jPILr3+nW+ZfBCRTUq205UuBoZmYyeyWfdBprHlaA5yymrh767Erb1DW/XcmQMi0SfSB1V1Wrz8/fFW7W7fHCYfRGRzqtQa5JTVArDf5IMjH2RKjTeQu39IVKuLtGUyAW/d2gPOchn+PluAH4/lXlc8TD6IyOakFOh3svVzc4aPm7PE0ZiHIfk4nVthsiI/clx/n83HuQuVcFcqcPfAyDado1OgB+aN7AgAeGXLSZRU1bU5HiYfRGRzjHu62GG9h0G0vztcneSoqdcitZBFp3R9Vm7X13rMGBABL1enNp/nXyM6oHOgO4qq6vD6z6fbfB4mH0Rkc+y1s2ljcpmArsEeANjvg67PofQSHEgrhpNcwOwh0dd1LmeFDG9N6wlBADYdzsKu8wVtOg+TDyKyOfa80qWx7myzTibwccMGclPiQhHk5XLd5+sd4YP7BkUBAP79/XFU17V+A0QmH0Rkc+y5x0djhmZjHPmgtkrKr8Qfpy8AuHor9dZ6dlwMQr1dkVlcg//741yrn8/kg4hsikarQ1qRvuDUUUY+TuaUX/fSRnJMn+xMhigCY7oFomOAh8nO665U4PWpsQCAVbtTcSyrtFXPZ/JBRDYlo7ga9VoRrk5yhHi5Sh2OWXUKdIdCJqCsph5ZJdff2Ikcy4XyWnx/JBsA8LAJRz0MRsYE4Ja4EOgadr6t1+pa/FwmH0RkU5Ibltm2b+cGWQs7NNoqpUKOzoEsOqW2Wb07FfVaEf2ifNAn0tcs11g4qRt8VE44nVuOtXtSW/w8Jh9EZFMcYaVLY4a6j9YOa5NjK6upx/r9GQD0G8iZi5+7EgsmdQMAfNSwnLclmHwQkU1xlJUuBn0ifQAACWklEkdCtmTD/gxUqjXoHOiOkTEBZr3W1PhQ3NDJH/UaTrsQkZ1ytJGPvlH64fKjWaVQa7QSR0O2oLZei9X/6KdAHhrWwezTk4Ig4M2pPeDi1PKUgskHEdkMURQdbuSjvb8b/NycUafR4XgW+33QtX1/JBsFFWoEe7ng5l4hFrlmuK8Kj93YscXHM/kgIptRUKFGRa0GMgGI8ldJHY5FCIKAvlH6qZeDnHqha9DqRHyyU1978cDQaDgrLPcxf/fAqBYfy+SDiGxGUsOoR4SvCkpF63bltGX9GqZeDqYVSxwJWbs/TuUhtbAKni4KTO8fYdFry1sxvcPkg4hsRrKD1XsY9I/WJx8JacXQcYdbugJRFLFih37U495BUXBXKiSO6MqYfBCRzTD0+HCUeg+DbsGeUDnLUV6rwbn8CqnDISu1L6UYiZmlcFbIMGtIlNThXBWTDyKyGY620sVAIZehd0RD3Ucqp16oeR/v1G8gd3ufMPi7KyWO5uqYfBCRzTCsdOngYCMfAFh0Sld1Orcc288WQCYADw0zfSt1U2PyQUQ2oVKtQW5ZLQCgo4ONfABA/0ZFp9xkji718Q79qMeEHsGI9LP+3Z6ZfBCRTUhpGPXwd1fCS+UkcTSWFxfhDYVMQG5ZLbJLuckcXZRVUo0fj+UCAB4eZr5W6qbE5IOIbMLFeg/r/1ZnDipnBbqHegHgkltqatXuVGh1IoZ09EOPMC+pw2kRJh9EZBMMyYejrXRprF8k6z6oKVEUsfVEHgB9UzFbweSDiGyCsdjUAes9DPo19PvgihcyyCqpQW5ZLRQyAYPa+0sdTosx+SAim8CRD6Bvw8jH+fxKlFTVSRwNWYN9KUUAgJ5hXnB1tp2uv0w+iMjq1Wt1SC+qBuCYy2wN/NyVxpqXhHROvRBwoGEUrH+0n8SRtA6TDyKyeulF1dDoRKic5Qj2dJE6HEkZ9nlJYNEpAdjfkHwMaO8rcSStw+SDiKyeod6jfTs3yFqxeZU9MiQfB5h8OLzcshpkFFdDJlyckrMVTD6IyOoZ6z0cuNjUwLDJ3InsMtTUaSWOhqRkmHLpHuIFDxfb6n3D5IOIrB5XulwU5uOKQE8l6rUijmaWSh0OSWi/sd7DtqZcgDYkHzt37sTkyZMREhICQRCwefNm42P19fV44YUX0KNHD7i5uSEkJAT33nsvcnJyTBkzETmYZK50MRIEwTj1wmZjjs0w8jHAEZKPqqoq9OrVC8uXL7/sserqahw+fBgLFizA4cOH8d133+HcuXO4+eabTRIsETkeURSRXFAFwLFXujTG5IMKK9XG6UjDvwdbomjtEyZMmIAJEyY0+5iXlxf++OOPJvd9+OGH6N+/PzIyMhAREdG2KInIYV0oV6NSrYFcJiDSTyV1OFbB8GFzOL0EGq0OCjln0B2NodFclyAP+Lg5SxxN67U6+WitsrIyCIIAb2/vZh9Xq9VQq9XGn8vLy80dEhHZEEO9R4SvCkqF7TRRMqeYIA94KBWoUGtwJq8CsaG2sZ8HmY4t13sAZi44ra2txfz58zFjxgx4eno2e8ySJUvg5eVlvIWHh5szJCKyMRc3lOOUi4FcJqBPlH5p5QG2WndIxv4eNtZczMBsyUd9fT2mT58OnU6Hjz766IrHvfjiiygrKzPeMjMzzRUSEdkg40qXAMfczfZKjM3G0pl8OJqy6nqcydPPEvSLtq3+HgZmmXapr6/HHXfcgdTUVPz1119XHPUAAKVSCaVSaY4wiMgOsMdH84zNxlJLIIoiBMGxm685koNpxRBFfdO9AA/b7Phr8pEPQ+Jx/vx5/Pnnn/Dzs80hISKyDhdHPph8NNYzzAvOchkKK9XGfW/IMexP1W8mZ4tLbA1aPfJRWVmJpKQk48+pqak4evQofH19ERISgttuuw2HDx/GTz/9BK1Wi7y8PACAr68vnJ1tryKXiKRTXluPC+X6gnTWfDTl4iRHzzAvJKSX4EBaMaL8OS3lKA7YeL0H0IaRj4SEBMTHxyM+Ph4A8PTTTyM+Ph4LFy5EVlYWtmzZgqysLMTFxSE4ONh427Nnj8mDJyL7ltLQ36OdhxJerrbVPtoS+nKTOYdTqdbgRI6+3sNWV7oAbRj5GDFiBERRvOLjV3uMiKg1WO9xdf2jfbByB3AwrUTqUMhCDqWXQKsTEe7rihBvV6nDaTN2piEiq8WVLlfXJ8IXggCkFlahoEJ97SeQzdufoq/36B9lu1MuAJMPIrJiHPm4Oi+VE2ICPQBw6sVR2PJ+Lo0x+SAiq8WVLtd2cZ8XTr3Yu5o6LRKzSgEAA9oz+SAiMrk6jc64hJS72V5Z34ZOp9xkzv4dySxBvVZEoKcSEb62vc8Rkw8iskoZxVXQ6kS4OcsR5GmbjZQswbDi4WROGSrVGomjIXNqvMTW1pvKMfkgIqtk3NMlwN3m/9CaU7CXK0K9XaETgSMZnHqxZ/tTbHszucaYfBCRVUpu6PHB5mLXZvgwOshN5uxWnUaHww3J5UAbr/cAmHwQkZUyrnRhvcc1Xaz74MiHvTqWVQq1Rgc/N2e7SMiZfBCRVTKudGnHHh/X0r9hxcuRzBLUaXQSR0PmsD/14pSLPUxDMvkgIqsjiiKSOfLRYh3aucNb5YTaeh1O5pRJHQ6ZQePkwx4w+SAiq5NXXouqOi3kMgERvhz5uBaZTEDfSEO/D9Z92BuNVodDaba/mVxjTD6IyOoY6j0i/VRwVvDPVEv0Y92H3TqZU46qOi08XRSICfKQOhyT4G81EVmdZLZVb7V+0Rd3uNXpuMGnPTnQaMpFLrP9eg+AyQcRWaEktlVvtdgQL7g4yVBSXY+UwkqpwyET2p/asJmcndR7AEw+iMgKJefre3xw5KPlnBUyxIV7AwAOpHLqxV7odGKTzqb2gskHEVkdjny0jWHJLXe4tR9n8ipQXquBm7Mc3UM8pQ7HZJh8EJFVKaupR0GFGgB7fLRW34bk4wCTD7txoGHKpU+ULxRy+/nItp9XQkR2wdBcLNBTCQ8XJ4mjsS29I30gE4CskhrkltVIHQ6ZwH7jlIv91HsATD6IyMqwuVjbuSsV6NYwNM8lt7ZPFMUmK13sCZMPIrIqxnoPFpu2Sb8objJnL5ILKlFUVQelQoaeYV5Sh2NSTD6IyKoYV7pw5KNNjMkH6z5snmHKJT7CG0qFXOJoTIvJBxFZlWSOfFwXww63Zy9UoKymXuJo6HrsT7G/JbYGTD6IyGrU1GmRUVwNgCMfbRXg4YIoPxVEETiczroPW9W43sPeik0BJh9EZEUS0ouh1YkI9XZFgIdS6nBsVj8uubV5mcU1yCuvhZNcQHyEj9ThmByTDyKyGnuS9T0NBnXwgyDYxx4WUujHZmM2b19Df4+eYd5wdbaveg+AyQdZ2InsMmw9kQdR5MZXdDlD8jG4g/3NcVuSYZO5xMwy1NZrJY6G2sKep1wAJh9kIVqdiPf/PI+bl+/Gw18ewm8n86QOiaxMeW09jmeVAtCPfFDbRfmp4O/ujDqtDsezy6QOh9rAHjeTa4zJB5ldfnkt7lm1H//35zkYdvpesT2Zox/UxMHUYuhEINrfDcFerlKHY9MEQbhY98F+HzYnp7QGmcU1kAkXW+bbGyYfZFa7zhfgpg92YU9yEVTOciya3A0uTjIkZpVhb8MQOxHQtN6Drh/rPmyXIWGMDfWCu1IhcTTmYZ+viiSn0erwf3+ew0fbkyGKQJcgDyyf0RsdA9yRWliFz/emY8WOZAzu6C91qGQljMlHeyYfpmBMPtJLoNWJkMtYwGsr7HU/l8Y48kEml1tWg7s+3Yf//q1PPGYMiMDmeUOMfRsevKE95DIBu84X4ngW56MJKK6qw+nccgDAQCYfJtE12ANuznJU1Gpw7kKF1OFQK1ys97Df3wUmH2RSf525gJve34WDaSVwVyrw4V3xeHNqD7g4XVwqFu6rwuSewQCAlTuSpQqVrMj+FP0f25hAD7Rjfw+TUMhl6B2p7w/BVuu2o6BCjZSCKggC0N9O6z0AJh9kInUaHd74+RRmr01ASXU9eoR64efHh2Jyr5Bmj394RAcAwC8ncpFaWGXJUMkKsd7DPC7u88JOp7bCUO8RE+gBL5WTxNGYD5MPum6ZxdW44+O9+HRXKgDg/iFR+N+/BiHSz+2Kz+kS5IkbuwRAFIFPdnL0w9HtSS4EwOTD1Az7vBxMLebqMhtxoGHKxd6nH5l80HXZeiIXN32wC0czS+HposDH9/TBosndW7QD478aRj82HcpGfnmtuUMlK3WhvBbJDcPMA+14jlsK8eE+UMgE5JXXIqukRupwqAUMxab22t/DgMkHtUltvRaLfjiBh788jIpaDeIjvPHLEzdgXPegFp+jX5Qv+kb6oE6rw6p/Us0YLVmzfQ31HrEhXnY9zCwFV2c5YkO9ALDuwxaUVtfhTJ6+OJjJB9ElUgurMG3FHqzbmw4AmDu8Pb6ZOwhhPqpWn8sw+rF+Xwa3/3ZQe5LYUt2cDB9iTD6sn6Heo0M7N/i723fhNZMPapUfjmZj0ge7cDKnHL5uzlhzfz+8OKErnORt+6c0MiYAMYEeqFRr8OW+dBNHS7ZgT4q+3mMgkw+z6Gtc8cKiU2t3wDjlYv+/C0w+qMWWbT2DJ746iqo6LfpH+eKXx2/AyJiA6zqnTCZg7vD2AIA1/6RyEywHk1lcjcziGihkF9uBk2kZ2nMn5VeiuKpO4mjoagz1HgPb2//vApMPapGK2npjT47HbuyIDQ8OQJCXi0nOPblXCEK9XVFYWYdvD2WZ5Jy2RK3ROuxKhL0N9R69wr3tto201HzdnI0N/thq3XpV1NbjZI6+6aK913sATD6ohRLSSqATgUg/FZ4ZGwNFG6dZmuMkl+HBG6IB6JfdarQ6k53b2v115gK6LfwN/d/chnkbDuOLvWk4d6ECOp1jJCN72VLdIgyjSl8dzITWQf5t2ZpD6fq/sRG+KofYWJHJB7WIcfmXmYbG7+wXAV83Z2QW1+Dn47lmuYa1qdPo8OqPp6DViSioUOPnY7lY8MNJjP2/nejz+h+Y+0UCVu9OxYnsMrv8wBBF0djfg8Wm5nVX/3A4y2X460w+3vzltNThUDMcZYmtAcc5qUUMew0MMNM3VFdnOWYNjsK7f5zDyh0puLlXCATBvjfC2nggA2lF1fB3V+K9O+NwOKME+1OLcCi9BCXV9fjt5AX8dvICAMDDRYH+Ub7oH+2LAe39EBviadLRJymkFlbhQrkazoqLbcDJPHqGeePt23viia+OYtXuVIT5uOL+IdFSh0WNHHCAzeQaY/JB11RdpzFuAGfOX4x7B0Vi5Y5knM4tx45zBRhxncWs1qyith4fbDsPAHhidCcM7eSPoZ38AXRCnUaH49ll2J9ahP0pxTiUXoKKWg22ncnHtjP5AAA3Zzl6R/pgYHs/DIj2RY8wrxY1drMmhpbqfSJ8muz9Q+ZxS1wosktrsGzrWbz60ymEeLu2qi8PmU9NnRbHskoBAAMcYKUL0IZpl507d2Ly5MkICdF/M928eXOTx0VRxOLFixESEgJXV1eMGDECJ0+eNFW8JIFD6SXQ6ESEersi3Lf1vTxaylvljBn9IwAAK7bbd8v1T3emoKiqDu393TC9X3iTx5wVMvSJ9MEjIzpi3ez+OLpwDLY8OgQv3dQVo7sGwsvVCVV1Wuw6X4i3fzuL21buRa9XfseG/RkSvZq22cv9XCzuX8M7YMaACIgi8PjGIzicweW31uBIRgnqtSKCvVwQ7mv/9R5AG5KPqqoq9OrVC8uXL2/28WXLluHdd9/F8uXLcfDgQQQFBWHMmDGoqOCWzrZqf4rlhgMfuCEaTnIB+1P13/jtUX55rXEfnOfHx1yzR4pCLkPPMG88OKw9PruvL44sGINfHr8Biyd3w4TYIPi5OaO2XofXfjplM0spdTrRuNKF9R6WIwgCXr25O0bGtINao8OcdQlIL+LGjlLb16jew96nmw1anXxMmDABr7/+Om699dbLHhNFEe+99x5eeukl3HrrrYiNjcW6detQXV2NDRs2mCRgsryL9R7mTz6CvVwxNT4UAIxLe+3N//15HjX1WvSO8G7TsLdMJqBbiCdmDYnGirv7IOHl0ege4omaei3W7UkzfcBmcC6/AsVVdVA5y9EzzFvqcByKQi7D8hm9ERvqieKqOsxac9BmklZ7ZdhMzlGmXAATr3ZJTU1FXl4exo4da7xPqVRi+PDh2LNnT7PPUavVKC8vb3Ij61Fbr0VipqHewzK/GA8N6wBBAP44dQHnL9jXiFlSfgW+PqifHvn3TV1N8i1HEARjm/q1e9JQpdZc9znNzdBSvW+UL5wVtl04a4vclAqsvq8fQr1dkVpYhYc+T2CDP4moNVocySgF4DgrXQATJx95eXkAgMDAwCb3BwYGGh+71JIlS+Dl5WW8hYeHN3scSeNIRinqtDoEeioR6We+eo/GOga4Y2w3/b+hlTtSLHJNS1m69Sx0IjCmW6Cx86QpTIgNRpSfCmU19dh4wPprPwzFppxykU6ApwvW3N8PHi4KJKSX4JlvEh2mv4w1OZZVBrVGB393Z3Ro5yZ1OBZjlq8cl36bE0Xxit/wXnzxRZSVlRlvmZmZ5giJ2sgw5dI/2s+ic5EPD9d/k//haDayS+1jK/CDacX449QFyGUCXhjfxaTnlssEzG14zz7blYo6jfU2atPqROO/KyYf0uoc6IGP7+kDJ7mAn4/n4q2tZ6QOyeHsTzH8jXWceg/AxMlHUJB+/vrSUY78/PzLRkMMlEolPD09m9zIeliy2LSx+AgfDGrvB41OxGe7bH/0QxRFY3OnO/qGG9tdm9KtvUMR4KFEXnktNh/NNvn5TeVkThkqajXwcFGge4iX1OE4vMEd/LHstp4AgE92puDzvWnSBuRg9hv7ezhWIm7S5CM6OhpBQUH4448/jPfV1dVhx44dGDx4sCkvRRag1miNS/Gk2OjIUMfw1YFMlNh4QdxvJ/NwJKMUrk5yPDW6k1muoVTI8cBQfeOolTuSrXYI3TDlMiDaD3KZ43zTs2ZT48Pw7NjOAIDFW07iz1MXJI7IMZTV1DfaTI7Jx1VVVlbi6NGjOHr0KAB9kenRo0eRkZEBQRDw5JNP4s0338T333+PEydOYNasWVCpVJgxY4apYyczazoXafpv6tdyQyf/i6s4bPjbWL1Wh6VbzwIAHrwhGgGeptmQrzkzBkTA00WBlIIq/H6q+TorqbHewzrNG9kR0/uFQycCj208gsTMUqlDsntbT+SiTqND50B3dA60/N9YKbU6+UhISEB8fDzi4+MBAE8//TTi4+OxcOFCAMDzzz+PJ598Eo888gj69u2L7Oxs/P777/Dw8DBt5GR2Us9FXrqKo7rO+ldxNOerg5lILayCn5szHmqoyzAXDxcn3DsoCoC+UZu17ZZbp9HhYMM3vcEdmXxYE0EQ8NqUWAzr3A419Vo8sO4gMourpQ7Lrm0+kgNA333Wkeo9gDYkHyNGjIAoipfd1q5dC0D/D3jx4sXIzc1FbW0tduzYgdjYWFPHTRZgDXORE2KDEemnQml1Pb46YHvFyJVqDd7/8xwA4PFRnSyybfysIVFQKmRIzCozdhG1FseySlFTr4WfmzM6B/ALibVxksvw0cze6BbsicLKOty35gBKq00z5anViTiUXozPdqVwVAVAblkN9jUUXt8SFyJxNJbHBfbUrHqtzthh1BLNxa5ELhPw0LD2AIDPdqVY9SqO5ny6MwWFlXWI8lPhrobW8ebm767EnQ0t21dYWaM2w5TLwPZ+kLHewyq5KxVYc38/BHu5IKWgCg99cQhqTdt6gORX1OLbhEzM23AYvV/7A9NW7MXrP5/G1I/+wQfbztvlbs0tteVoDkRRP7Ic5mOZNgbWhMkHNetEdhmq67TwVjlJ/g11Wu8w+LsrkVNWiy2JOZLG0hr5FbX4tGGlznPjuli0mdaDN7SHXCZg1/lC46aA1mBPciEA7udi7QINPUCUChxILcaz3x5rUQGzRqvDgdRiLNt6BhM/2IX+b2zDc/87hp+P5aKsph6eLgr0ifSBTgTe/eMc7l29HwUVagu8Iuvz/RH9irQpcaESRyINJh/ULMOUS78oX8m/obo42cYqjku9/+d5VNdp0SvcGzf1sOzuoeG+KtzcSz+Uu2JHkkWvfSW19VocTi8FwGJTW9AlyBMr7+kDhUzAj4k5ePv3s80el1dWi68PZuBfXx5C/Gt/4I6P9+Kj7ck4maPvVt0zzAuP3dgRm/41CIcXjMGmfw3GO7f3gquTHP8kFWHC+7uwJ6nQki9NcmfyynEmrwLOchkm9giWOhxJmH8CmmySodjU0v09rmTmwAh89HcSkvIr8efpCxhr5VuBJxdU4quD+hqVf0/oIkkx2dzh7fH9kWz8eiIPKQWVaC/BiqXGDqeXGLvlRvs7TidHWzakoz/emtYTz36biBXbkxHm44rb+4TjUHoJtp/Lx46zBTiT13QLBB+VE4Z1bofhndthWOd28HdXXnbeaX3C0CvcC/PWH8HZCxWYuWo/HruxE54Y1ckhll8bCk1HxLSDl8pJ4mikweSDLqPViUhIM/T3sI5vqJ4uTrh7UCRWbE/Gih3JGNMt0Kqrw9/eehZanYhRXQIwQKL3sEuQJ0Z1CcC2M/n4ZGcK3prWU5I4DC4usfW36v931NRtfcKQVVKN9/48jwWbT2DJL2dQ2Wj/IEEAeoV5Y0SMPuHoGebdogSiY4AHNs8bgld+PImvDmbig23ncSC1CB9MjzfrcnSp6XQitjQ0ATRsoumIOO1ClzmVU44Ktb4DZddg6+k4e/+QKDgrZDiSUYoDDdNC1uhQejG2nsyDTABemGDaNuqtZViqvOlwFvLKaiWNhfUetuuJUZ1wW58w6ET9Ci4/N2fcGh+K96fH4dDLY7B53hA8Oboz4iN8WjVy4eosx1vTeuL96XFwc5ZjX0oxbvpgF3adLzDjq5HWgbRi5JTVwsNFgZFdAqQORzIc+aDLGPbd6Bfla1VDoAEeLri9TxjW78/Aih3Jko0oXI0oiljyi35/jNv7hKNzoLTFun2jfNEvygcH00qw+p9U/PumrpLEUanW4FhD4SvrPWyPIAh469YeGNUlAGE+KnQP8TRpLdgtcaHoEeqFeRuO4HRuOe5dfQDzRnTEk6M7QSG3r+/ImxsKTW+KDYaLk1ziaKRjX/9XyST2SbSfS0s8NKw9ZAKw/WwBjmWVSh3OZf44dQEJ6SVwcZLhqTGdpQ4HAPDIiI4AgPX70lFWXS9JDAfTiqHRiQj3dXXIZYX2QCGXYUKPYPQI8zJLEXr7du74/pHBmDkgAqIILP87CTM+3Y/cMvvYWBLQF13/fDwXADDFgadcACYfdAmdTsTBtIbkwwpHFiL93IyrOF76/gQ0Wuvp+6HR6rC0YVfQB4ZGI8jLOuatR8S0Q5cgD1TVaSXbNMzQ7Gxwe39Jrk+2wcVJjjem9sDyGfFwVypwIK0YN72/C3+fzZc6NJPYfjYfFbUaBHu5WOWXO0ti8kFNnL1QgbKaeqic5egeYj31Ho39e2JXeLoocDy7DGv3pEkdjtE3CVlILqiCj8rJuL29NWjcpn7NnjTU1LWtYdT1MNR7sKU6tcSkniH46bGhiA31REl1Pe5fcxBLfj2Neiv6stEWht4eN8eFSN7CQGpMPqgJwxLbPpE+cLLSudYADxdj7cJ/fj+LjCLp95+ortPg/xraqD92Yyd4uljX8rmJPYIR5uOK4qo6fJNg2Tb1ZdX1xp4Pg6xwNI2sU5S/Gzb9azDuGxQJAPh4Rwqmf7IP2aW2OQ1TVl2Pv8/oC2kdeZWLgXV+upBkbGV75zv7hWNge1/U1uvw0ubjkm+g9tmuVBRUqBHhq8LdAyMljaU5CrkMcxva1H+yM8Wi3yD3pRZBFIEO7dzsegklmZ5SIccrt8Rixcze8HBR4FB6CSZ+sAt/nrogdWit9suJXNRpdegS5IEuQdY5qmxJTD7ISBRF4xJWa5+PFAQBS27tCWeFDLvOFxqHM6VQWKnGxw17qDw7LsaibdRb4/a+4fB3d0Z2aQ1+Oma5NvV7G/X3IGqLCT2C8fNjN6BXmBdKq+sx5/MEfLDtvNRhtYqxnTpHPQAw+aBGkvIrUVRVBxcnGXqGeUsdzjVF+7vhiVGdAACv/XQKRZXS7BHxwbbzqKrTomeYFyZZcatkFyc57h+ib1O/Yrvl2tQb6z24xJauQ4SfCt8+PBizG/4N/9+f53Ako0TiqFomu7QGB1KLIQgwFsw7OiYfZLSvYdSjd4SP1X57v9RDw9qjS5AHSqrr8dpPpyx+/dTCKmzYnwEAmD+hi9UXkd09MBLuSgXOXajEX2fMv4KgoEKNcxcqAVjn6imyLc4KGRZO7obb+oRBFIEFP5ywiZ1xf2joaDog2hch3q4SR2MdbOMThizi4n4utvMh4SSXYem0npAJwOajORZfkvf2b2eg0YkYEdPOJqYVvFydMHNgBADgo+1JZq+V2dfwb6prsCd83ZzNei1yHPMndIGniwInssuxfn+61OFclSiKxsZiLDS9iMkHAdD/ghiKTftbeb3HpXqFexunE17+/gSqGu07YU4JacX45XgeBEH/x9BWPDAkGs4KGQ5nlOJgmnmHrS/u52I7CS1ZP393JZ4bFwMAePu3syiUaMq1JU7nVuDchUo4y2UYH2u907KWxuSDAABpRdUoqFDDWS5DfIS31OG02jNjOyPMxxXZpTV45/dzZr/e2bwKPPTFIQDAtN5hNlW9HuDpgtv6hAEAVmxPMuu19rLeg8xkxoBI9Aj1QkWtxrilgTXa3DDlMqprALxcrWsJvpSYfBCAi1MuceHeNrnfgMpZgTem9gAArNmTiqOZpWa7VlJ+JWZ+tg/FVXXoEeqFBZO6me1a5vLQDfo29X+fLcDp3HKzXCOntAZpRdWQCUA/GxtNI+snlwl4bUosBEG/caKhM7M10epEbDmqX1l2SxynXBpj8kEALvb3GNDedj8khnduh6nxoRBFYP6mY2bpZZFaWIUZn+5DYWUdugV74osH+tvkt5kofzfc1LAyZ8X2ZLNcw7DEtkeYt9U1XSP7EBfujen9wgEACzZb13YLgP5LXV55LTxdFBjZpZ3U4VgVJh+kr/ewwWLT5rw8sSt8VE44k1eBT3ammPTc6UVVuOuTfcivUKNLkAe+nDMA3irbLaJ8uKEF/E/HcszSJZb1HmQJz4/rYvydX7fXuopPDVMuE3uGQKmwvRFlc2LyQcgqqUFOWS0UMgG9I72lDue6+LkrsXCyfhrk/W3nkVJQaZLzZhZXY8an+5FXXotOAe74cs4Am1+9ERvqhWGd20EnAp/sMu3ohyiKxnoPtlQnc/Jxc8YL4/UF3//3xzlcKK+VOCK92notfj2eBwCYEsfeHpdi8kHG5ZA9w7ygclZIHM31mxIXimGd26FOo8OL3x2/7mZaOaU1mPGZfk+J9v5uWP/gAPi7K00UrbQeadhw7puELBRUmG7FQEZxNXLKauEkF9A3ysdk5yVqzh19wxEX7o1KtQZv/Hxa6nAAAH+dyUeFWoNQb1f0i7Ld6WxzYfJBjeo97OMbqiAIeGNKLFyd5NifWoyvr2MjtbyyWtz16T5kFtcg0k+FDQ8ORICH/exPMiDaF/ER3qjT6LDmn1STndcw5RIf7mMXCS1ZN5lMwOtTYiETgC2JOdiTVCh1SNzB9hqYfBD2p+o/KGytv8fVhPuq8MzYzgCAN385jfw2DMXmV9Rixqf7kF5UjXBfV2x8cCCCvOwn8QD0idq/Gmo/vtibjvLaepOc15B8DGK9B1lIbKiXcVPHBT+cQJ1GuuLT0uo6bG9oeMjGYs1j8uHgckprkFlcA5kA9I20r+Hx+4dEo1eYvg/Aoi0nW/Xcwko1Zny6HymFVQj1dsWGOQPtti3y6K6B6Bjgjgq1Bp/tTLnurqf6eg8mH2R5z4yNgZ+bM5ILqrDahCN5rfXz8VzUa0V0C/ZE50APyeKwZkw+HJxhF9vYUC942NlySLlMv/OtXCbg1xN5+O1kXoueV1xVh7s/24+k/EoEebpgw4MDEO6rMnO00pHJBOPKlw/+SsJNH+zGpkNZbf7mmJRficJKNZQK22xYR7bLy9UJL97UFQDw/p/nkVNaI0kcm4072LLQ9EqYfDg4w5TLADuacmmsW4gn5g5rDwBY+MOJa04rlFbrE48zeRUI8FBi40MDEennZolQJTU1PhQPD+8AVyc5TueW45lvE3HDsr/w0fYklFW3birGMOXSL8qXywvJ4qb1DkW/KB/U1Gsl2Wwys7gaB9NKGnaw5ZTLlTD5cHD7UxqKTW28v8fVPD6qE6L93XChXI1lW6/chrmsph73rDqAU7nl8Hd3xoYHByLa3/4TD0A/SjR/QhfsffFGPDcuBgEeyob36ywGvbUNi7ecRGZxy3qB7DEsseWUC0lAEPSdTw0jnjvOFVj0+lsS9R1NB7X3s7saMVNi8uHA8strkVJYBcHO21+7OMnxZkPr9S/3ZTTbhrmith73rT6A49ll8HVzxvo5A9ExwN3SoUrOW+WMeSM7YtcLI/Gf23uhS5AHquu0WLsnDcPf/huPrD+EwxlX3oxOpxOxryGhZfJBUukS5IlZg6MAAIt+OIHaeq1FriuKonGVyxQWml4Vkw8HZlhi2zXI0yZbhLfGoA5+xjbM8zcdg1pz8Y9RlVqD+9ccxNHMUnirnPDlAwMQE+TYRWJKhRy39QnDr0/cgC8e6G9sRvbL8Tzc+tEeTFuxB1tP5EJ7SQ+VU7nlKKuph7tSgZ6hXhJFTwQ8OboTAjyUSCuqxqcm7nZ8JSdzypGUXwmlQobxsUEWuaatYvLhwOxxie3VvDihK/zdlUguqMJ//9Z39Kyu0+D+tQeRkF4CTxcFvnxgALqF2M4OteYmCAJu6NQOn8/uj61P3oDb+oTBSS7gUHoJHv7yMG58ZzvW7UlDdZ0GwMX9XPpH+0Ih558Xko6HixNemqgvPl3+d1KLpw2vh6HQdHTXQO5ndA386+DADPUeA214M7nW8FI54dVbugPQbyV/LKsUc9Yl4EBqMTyUCnzxwADE8tv6FXUJ8sR/bu+Ff164EfNGdoCXqxPSi6qxaMtJDFryF5ZtPYM/Tl8AwJbqZB1u7hWCQe39oNbo8MqPrVtu31panWis9+CUy7Ux+XBQRZVqnM/X73vS346LTS81ITYIY7oFol4rYtqKPdiTXAQ3ZznWzu6PXuHeUodnEwI8XfDcOH1x6qu3dEeknwplNfX4aHuycek26z3IGuiLT7tDIRPw5+l8/HnqgtmutTe5CPkVanirnDC8M3ewvRYmHw7KUHTZOdDd5jdIaw1BEPDaLbFwVypQrxXh6iTHmvv7o4+dNVizBJWzAvcOisJfz4zAyrv7GJvURfiq0C2YU1dkHToGeOCBG6IBAIt/PGm24lNDoenEHsFwVvCj9Vq46YKD2ucAS2yvJMjLBe/e0Quf7UrF02M7O0zNi7nIZQLGxwZhfGwQkvIr4emq4F4WZFUev7ETthzNQVZJDT76OwlPj40x6flr6rTGJoZsp94yTM8c1MXN5Bzzg3ds9yB88/AgDGRtgkl1DHC3q433yD64KRVYOKkbAGDljhSkFlaZ9Px/nr6ASrUGYT6uHEVtISYfDqisuh5n8soBOM5KFyJybONjgzCsczvUaXVYtOXkde9h1NgPRxt6e8SFQhA46tcSTD4c0IG0Yogi0L6dG7+lEpFDEAQBr9zcHc5yGXaeK8DWEy3b6+laiqvqsP2svosq93JpOSYfDmh/in3v50JE1JxofzfMHa7f6+nVn04Z+9Ncj5+P5UCjExEb6omOAY7dnLA1mHw4IGO9hwMWmxKRY3tkREeE+bgit6wWL31/ArvOFyCrpBo6XdumYTYfbejtEcdC09bgahcHU1Fbj5M5ZQAct9iUiByXq7Mciyd3x5zPE/D9kWzjElmlQoZIPxWi/d0Q5e+G9v5uiPZ3R5S/Cu3clc3WcmQUVeNQeglkgr6hGbUckw8Hk5BeAp2o78UQ7OUqdThERBY3ulsglt3WE7+fvIDUwkpkFFdDrdHh3IVKnLtQednx7koFovxViPZ3R7S/G6Ib/vv3huW1Qzr6I8CT9XOtweTDwew39vfgqAcROa47+objjr76zSY1Wh1ySmuRUliJtMIqpBZWIaWwCmlFVcgqqUGlWoMT2eU4kV3e7Llu4ZRLq5k8+dBoNFi8eDHWr1+PvLw8BAcHY9asWXj55Zchk7HERGqGzeQGsL8FEREAQCGXIcJPhQg/FXBJ/zG1RovM4mqkFOiTkrSiKuN/51eoEeLlwh1s28DkycfSpUuxcuVKrFu3Dt27d0dCQgLuv/9+eHl54YknnjD15agVqus0OJ7VUO/BkQ8iomtSKuToGODR7EqWKrUGzgoZnLiDc6uZPPnYu3cvbrnlFkycOBEAEBUVhY0bNyIhIcHUl6JWOpReAo1ORIiXC8J8WO9BRHQ93JSsXGgrk6drQ4cOxbZt23Du3DkAQGJiInbv3o2bbrqp2ePVajXKy8ub3Mg8jPUe7f3YhY+IiCRj8rTthRdeQFlZGbp06QK5XA6tVos33ngDd911V7PHL1myBK+88oqpw6BmGOs9OOVCREQSMvnIx9dff40vv/wSGzZswOHDh7Fu3Tr85z//wbp165o9/sUXX0RZWZnxlpmZaeqQCEBtvRaJmYb+Hiw2JSIi6Zh85OO5557D/PnzMX36dABAjx49kJ6ejiVLluC+++677HilUgmlUmnqMOgSRzJKUafVIcBDiSg/ldThEBGRAzP5yEd1dfVlS2rlcjl0Op2pL0Wt0HiJLes9iIhISiYf+Zg8eTLeeOMNREREoHv37jhy5AjeffddzJ4929SXolZgczEiIrIWJk8+PvzwQyxYsACPPPII8vPzERISgrlz52LhwoWmvhS1kFqjxeGMEgDAQO7nQkREEjN58uHh4YH33nsP7733nqlPTW2UmFkGtUYHPzdndGjnLnU4RETk4NiWzQHsS9HXewxkvQcREVkBJh8OwJh8dOASWyIikh6TDzun1mhxKF1f7zGI9R5ERGQFmHzYOUO9h7876z2IiMg6MPmwc3uT2d+DiIisC5MPO2eo9xjElupERGQlmHzYsdr6xv09mHwQEZF1YPJhxxIzSxvqPZTo0M5N6nCIiIgAMPmwa3uN/T18We9BRERWg8mHHTPWe7C/BxERWREmH3ZKX+9RCoD1HkREZF3sMvk4lF6M8e/txM/HcqUORTJHM0tRp9GhnYcS7f1Z70FERNbD7pKP8tp6PL7xKM7kVeD5/yUio6ha6pAkwf1ciIjIWtld8vHKllPILq0BAFTVafHst4nQ6kSJo7I8Q3OxgWypTkREVsauko+tJ/Kw6XAWZALw3p1xcHOW40BaMVbvTpU6NIuqrdfiSGYpADYXIyIi62M3yUdhpRovfX8cADB3eAdMiQ/FwsndAABv/3YWZ/MqpAzPoo5k6Os9AjyUiGa9BxERWRm7SD5EUcT8TcdRVFWHLkEeeHJ0JwDAHX3DcWOXANRpdXj6m6Oo0+gkjtQyWO9BRETWzC6Sj28PZeHP0xfgLJfh/+6Mg1IhBwAIgoC3pvWAj8oJJ3PKsfyv8xJHahl7GyUfRERE1sbmk4/M4mq8+uMpAMDTYzuja7Bnk8cDPFzwxtQeAID/bk/GkYa9TuxVbb0WRxv6e7C5GBERWSObTj50OhHPfpuISrUGfSN98OAN7Zs97qYewbglLgRanYhnvklETZ3WwpFazuGMEtRpdQj0VCLKTyV1OERERJex6eRj9T+p2J9aDJWzHO/c0Qty2ZXrG169ORaBnkqkFFZh6dYzFozSsvalFANgvQcREVkvm00+zl2owLLfzgIAFkzqhki/q6/q8FI5YdltvQAAa/ek4Z+kQrPHKIV9rPcgIiIrZ5PJR51Gh6e+1q9eGRnTDtP7hbfoecM7t8PdAyMAAM9+m4iymnpzhmlxTeo9mHwQEZGVssnk48O/zuNkTjl8VE5YOq1nq6YX/n1TV0T6qZBbVotXfjxpxigt73C6vt4jyNMFkaz3ICIiK2VzycfhjBL89+8kAMAbU3sgwNOlVc9XOSvw7h29IBOA7w5nY+uJPHOEKYmLUy6+rPcgIiKrZVPJR3WdBs98kwidCEyJC8FNPYLbdJ4+kb6YO7wDAOCl74+jsFJtyjAl07jYlIiIyFrZVPLx1q9nkFpYhSBPF7xyc+x1nevJ0Z3QJcgDRVV1ePG74xBF2958rqZOiyOZ+h4m7O9BRETWzGaSj53nCvD53nQAwNu394SXyum6zqdUyPF/d8bBSS7gj1MXsOlwtinClMzhjBLUa0UEe7kgwpf1HkREZL1sIvkoq67H8/87BgC4b1AkbujUziTn7RrsiafGdAYAvLLlJLJKqk1yXilwPxciIrIVNpF8LNxyAnnltWjv74b5E7qa9Nxzh3VAn0gfVKg1eO7bY9DpbHP6pXGxKRERkTWz+uTjp2M5+OFoDuQyAe/eGQdXZ7lJzy+XCXjn9l5wdZJjb0oR1u1NM+n5LaGmToujmaUAWGxKRETWz6qTj/zyWry8+QQAYN6IDogL9zbLdaL83fDvifoRlbd+PYOk/EqzXMdcDqXr6z1CWO9BREQ2wGqTD1EU8fymYyitrkdsqCceG9XJrNe7e0AEhnVuB7VGh2e+OQqNVmfW65kS6z2IiMiWWG3y8e2hLGw/WwBnhQz/d0ccnOTmDVUQBCyb1hOeLgokZpXho+3JZr2eKXE/FyIisiVWm3y8/Zt+59nnx8WgU6CHRa4Z5OWC16bo+4d8sO08jmeVWeS616O6ToPErFIATD6IiMg2WG3yUVOnw8D2vpg9JNqi1725Vwgm9giGRifi6W+OorZea9Hrt5ah3iPU2xXhvq5Sh0NERHRNVpt8uCnl+M/tvSCTWbaGQRAEvDYlFv7uSpzPr8QH285b9PqtZZhyGcD9XIiIyEZYbfIxf3wXhPlIs3LD180ZrzdMv3y+Nx0VtfWSxNES3M+FiIhsjdUmH1PiQyW9/rjugegY4I5KtQbfJmRJGsuVVNdpkNjQ32MQkw8iIrIRVpt8SD2FIAiCsd5k7Z40aK2w8+mh9BJodIZ6D/b3ICIi22C1yYc1mBofCm+VEzKKq7Ht9AWpw7nM3mQusSUiItvD5OMqXJ3luKt/BABgzT9p0gbTDO7nQkREtojJxzXcOygScpmAvSlFOJVTLnU4RlVqDY419CHhyAcREdkSJh/XEOzligmxQQCANf+kShzNRYZ6jzAf1nsQEZFtMUvykZ2djbvvvht+fn5QqVSIi4vDoUOHzHEpi5g9VF94+kNiDgor1RJHo7eXLdWJiMhGmTz5KCkpwZAhQ+Dk5IRff/0Vp06dwjvvvANvb29TX8piekf4IC7cG3UaHTbsz5A6HADcz4WIiGyXwtQnXLp0KcLDw7FmzRrjfVFRUaa+jMXdPyQKT3x1FF/sS8fDwzvAWSHdjFXjeo8B0Sw2JSIi22LyT9AtW7agb9++uP322xEQEID4+Hh8+umnVzxerVajvLy8yc0a3dQjGIGeShRUqPHz8RxJY0lIL4GW9R5ERGSjTJ58pKSkYMWKFejUqRN+++03PPzww3j88cfx+eefN3v8kiVL4OXlZbyFh4ebOiSTcJLLcO+gKADAqt2pEEXpmo4ZplzY1ZSIiGyRyZMPnU6H3r17480330R8fDzmzp2LBx98ECtWrGj2+BdffBFlZWXGW2ZmpqlDMpkZ/SOgVMhwIrscCeklksXB5mJERGTLTJ58BAcHo1u3bk3u69q1KzIymi/UVCqV8PT0bHKzVj5uzri1t37PmdW7pVl2W6nW4Hh2Q70Hm4sREZENMnnyMWTIEJw9e7bJfefOnUNkZKSpLyWJ+xv2e/ntZB6ySqotfv2EtGJodSLCfV0l2/WXiIjoepg8+Xjqqaewb98+vPnmm0hKSsKGDRvwySefYN68eaa+lCQ6B3pgaEd/6ETg873pFr/+vpRiAKz3ICIi22Xy5KNfv374/vvvsXHjRsTGxuK1117De++9h5kzZ5r6UpKZPTQKALDxQAaq1BqLXpvNxYiIyNaZvM8HAEyaNAmTJk0yx6mtwojOAYj2d0NqYRW+O5yFexpWwZhbRW09ThjrPZh8EBGRbeLeLm0gkwmYNTgKgH63W53OMstuDf09InxVCPV2tcg1iYiITI3JRxvd1icMHi4KpBRWYce5Aotck/09iIjIHjD5aCM3pQLT++kboq220G63hmLTgR24xJaIiGwXk4/rcO+gKMgEYNf5Qpy7UGHWazWp94jmyAcREdkuJh/XIdxXhbHdggDoaz/MKSFNX+8R6adCCOs9iIjIhjH5uE6zh+qbjn13OAslVXVmuw7rPYiIyF4w+bhO/aJ80D3EE2qNDhsPNt9C3hT2sb8HERHZCSYf10kQBMxuaLn++Z501Gt1Jr9GeW0993MhIiK7weTDBCb1Coa/uxJ55bX49USeyc+fkFYMnQhE+akQ7MV6DyIism1MPkxAqZDj7oERAIA1Zlh2a1xiyykXIiKyA0w+TGTmgEg4y2U4klGKwxklJj23sdi0A5MPIiKyfUw+TKSdhxI3x4UAMN2yW61OxHeHs9jfg4iI7AqTDxO6f0gUAOCX47nILatp83lEUcTfZ/Mx8YNdePqbROhEYHAHPwR5uZgoUiIiIukw+TCh7iFeGBDtC61OxBd709t0jiMZJZj+yT7cv+YgzuRVwMNFgefHx2DVff1MHC0REZE0FFIHYG9mD43G/tRibDiQgcdu7ARXZ3mLnpdcUIn//HbWuFrGWSHDrMFReGREB3irnM0ZMhERkUUx+TCx0V0DEe7risziGnx/JBszBkRc9fgL5bV478/z+CYhE1qdCJkATOsdhifHdEYo26gTEZEdYvJhYnKZgPsGReH1n09jzT+puKt/OARBuOy48tp6fLwjGat2p6K2Xt+YbHTXADw3rgtigjwsHTYREZHFMPkwgzv6heP//jiH8/mV2J1UiBs6tTM+VluvxZf70rH87ySUVtcDAPpE+mD+hC7oF8XupUREZP+YfJiBp4sTbu8bjrV70rB6dypu6NQOWp2I749k4//+OIfsUv1KmI4B7nh+XAzGdAtsdnSEiIjIHjH5MJP7Bkdh3d40/H22AF/sS8eXe9Nx9kIFACDI0wVPj+mMW3uHQiHngiMiInIsTD7MJNrfDaO6BODP0/lYsPkEAMDTRYF5IzvivsFRcHFq2SoYIiIie8Pkw4wevKE9tp3Jh7NchllDovDI8I7wUjlJHRYREZGkmHyY0YD2ftj6xDD4uDkhwIPdSYmIiAAmH2bHZbNERERNsdqRiIiILIrJBxEREVkUkw8iIiKyKCYfREREZFFMPoiIiMiimHwQERGRRTH5ICIiIoti8kFEREQWxeSDiIiILIrJBxEREVkUkw8iIiKyKCYfREREZFFMPoiIiMiirG5XW1EUAQDl5eUSR0JEREQtZfjcNnyOX43VJR9FRUUAgPDwcIkjISIiotYqKiqCl5fXVY+xuuTD19cXAJCRkXHN4K+lX79+OHjwYJufX15ejvDwcGRmZsLT01OyOKzlHHw/Lsf3xPTn4HvalKneD1PEYi3n4L8R05/DFO9pWVkZIiIijJ/jV2N1yYdMpi9D8fLyuu5fNLlcft3nAABPT8/rOo8p4rCWcwB8P5rD98S05wD4nl7qet8PU8ViLecA+G/E1OcATPPvzPA5ftVjrusKVm7evHlShwDANHFYyzlMwVpei7W8H4D1vB5rOYcpWMtrsZb3A7Ce12Mt74m1vBZrOYclCWJLKkMsqLy8HF5eXigrKzPZt1J7iMUa8P24HN8T0+N72hTfj8vxPTE9U7ynrTmH1Y18KJVKLFq0CEqlUupQrCoWa8D343J8T0yP72lTfD8ux/fE9EzxnrbmHFY38kFERET2zepGPoiIiMi+MfkgIiIii2LyQURERBbF5IOIiIgsiskHkRkIgoDNmzdLHQYRkVVyqORj1qxZEAQBDz/88GWPPfLIIxAEAbNmzbJ8YFZi1qxZmDJlitRhWCW+N6axZ88eyOVyjB8/XupQJJefn4+5c+ciIiICSqUSQUFBGDduHPbu3St1aJLLzMzEAw88gJCQEDg7OyMyMhJPPPGEce+va9m+fTsEQUBpaal5A7Vyhs+8t956q8n9mzdvhiAIEkWl51DJB6DfsO6rr75CTU2N8b7a2lps3LgREREREkZGZP9Wr16Nxx57DLt370ZGRobU4Uhq2rRpSExMxLp163Du3Dls2bIFI0aMQHFxsdShSSolJQV9+/bFuXPnsHHjRiQlJWHlypXYtm0bBg0a5PDvT2u5uLhg6dKlKCkpkTqUJhwu+ejduzciIiLw3XffGe/77rvvEB4ejvj4eON9W7duxdChQ+Ht7Q0/Pz9MmjQJycnJxsdvvPFGPProo03OXVRUBKVSib/++sv8L8TMoqKi8N577zW5Ly4uDosXLzb+LAgCPvvsM0ydOhUqlQqdOnXCli1bLBuoBFry3tDlqqqq8M033+Bf//oXJk2ahLVr1xofW7t2Lby9vZsc39y3s9dffx0BAQHw8PDAnDlzMH/+fMTFxZk/eBMrLS3F7t27sXTpUowcORKRkZHo378/XnzxRUycOBGAfpOuhx56CAEBAfD09MSNN96IxMRE4zkWL16MuLg4fPzxxwgPD4dKpcLtt99u89/2582bB2dnZ/z+++8YPnw4IiIiMGHCBPz555/Izs7GSy+9BABQq9V4/vnnER4eDqVSiU6dOmHVqlVIS0vDyJEjAQA+Pj4OP6I9evRoBAUFYcmSJVc8ZtOmTejevTuUSiWioqLwzjvvGB978cUXMXDgwMue07NnTyxatKjNcTlc8gEA999/P9asWWP8efXq1Zg9e3aTY6qqqvD000/j4MGD2LZtG2QyGaZOnQqdTgcAmDNnDjZs2AC1Wm18zvr16xESEmL8h+8IXnnlFdxxxx04duwYbrrpJsycOZPfTKhZX3/9NWJiYhATE4O7774ba9asQWt6HK5fvx5vvPEGli5dikOHDiEiIgIrVqwwY8Tm4+7uDnd3d2zevLnJ3xADURQxceJE5OXl4ZdffsGhQ4fQu3dvjBo1qsnvV1JSEr755hv8+OOP2Lp1K44ePWpze3w0VlxcjN9++w2PPPIIXF1dmzwWFBSEmTNn4uuvv4Yoirj33nvx1Vdf4YMPPsDp06excuVKuLu7Izw8HJs2bQIAnD17Frm5uXj//feleDlWQS6X480338SHH36IrKysyx4/dOgQ7rjjDkyfPh3Hjx/H4sWLsWDBAuOXg5kzZ2L//v1NvnyfPHkSx48fx8yZM9scl0MmH/fccw92796NtLQ0pKen459//sHdd9/d5Jhp06bh1ltvRadOnRAXF4dVq1bh+PHjOHXqlPFxQRDwww8/GJ+zZs0a4xybo5g1axbuuusudOzYEW+++Saqqqpw4MABqcMiK7Rq1Srj79n48eNRWVmJbdu2tfj5H374IR544AHcf//96Ny5MxYuXIgePXqYK1yzUigUWLt2LdatWwdvb28MGTIE//73v3Hs2DEAwN9//43jx4/j22+/Rd++fdGpUyf85z//gbe3N/73v/8Zz1NbW4t169YhLi4Ow4YNw4cffoivvvoKeXl5Ur2063L+/HmIooiuXbs2+3jXrl1RUlKCgwcP4ptvvsHq1asxdepUtG/fHqNGjcKdd94JuVxu3NI9ICAAQUFB8PLysuTLsDpTp05FXFxcsyMV7777LkaNGoUFCxagc+fOmDVrFh599FG8/fbbAIDY2Fj07NkTGzZsMD5n/fr16NevHzp37tzmmBwy+fD398fEiROxbt06rFmzBhMnToS/v3+TY5KTkzFjxgy0b98enp6eiI6OBgDjPLVSqcTdd9+N1atXAwCOHj2KxMREhxve69mzp/G/3dzc4OHhgfz8fAkjImt09uxZHDhwANOnTweg//C98847jb8/LT1H//79m9x36c+2ZNq0acjJycGWLVswbtw4bN++Hb1798batWtx6NAhVFZWws/PzzhK4u7ujtTU1CbfQCMiIhAWFmb8edCgQdDpdDh79qwUL8nsDCNlqampkMvlGD58uMQR2Y6lS5di3bp1xi/QBqdPn8aQIUOa3DdkyBCcP38eWq0WgH70Y/369QD0/w82btx4XaMeAKC4rmfbsNmzZxtrNv773/9e9vjkyZMRHh6OTz/9FCEhIdDpdIiNjUVdXZ3xmDlz5iAuLg5ZWVlYvXo1Ro0ahcjISIu9BnOSyWSXDYnX19dfdpyTk1OTnwVBME5N2auWvjd00apVq6DRaBAaGmq8TxRFODk5oaSkpMXv6aWjira+NZWLiwvGjBmDMWPGYOHChZgzZw4WLVqERx55BMHBwdi+fftlz7m0NqYxw/tjq6OvHTt2hCAIOHXqVLOry86cOQMfHx+oVCrLB2fjhg0bhnHjxuHf//53ky/Joihe8/dqxowZmD9/Pg4fPoyamhpkZmYav0i0lUOOfAD6Yd+6ujrU1dVh3LhxTR4rKirC6dOn8fLLL2PUqFHGob5L9ejRA3379sWnn36KDRs2XFY3YsvatWuH3Nxc48/l5eVITU2VMCLrwfemdTQaDT7//HO88847OHr0qPGWmJiIyMhIrF+/Hu3atUNFRQWqqqqMzzt69GiT88TExFw2pZeQkGCJl2Ax3bp1Q1VVFXr37o28vDwoFAp07Nixya3xKG1GRgZycnKMP+/duxcymey6hsOl5OfnhzFjxuCjjz5qsiIRAPLy8rB+/Xrceeed6NGjB3Q6HXbs2NHseZydnQHA+M2d9N566y38+OOP2LNnj/G+bt26Yffu3U2O27NnDzp37gy5XA4ACAsLw7Bhw7B+/XqsX78eo0ePRmBg4HXF4rDJh1wux+nTp3H69GnjG2zg4+MDPz8/fPLJJ0hKSsJff/2Fp59+utnzzJkzB2+99Ra0Wi2mTp1qidAt4sYbb8QXX3yBXbt24cSJE7jvvvsue58cFd+b1vnpp59QUlKCBx54ALGxsU1ut912G1atWoUBAwZApVLh3//+N5KSkrBhw4Ymq2EA4LHHHsOqVauwbt06nD9/Hq+//jqOHTtmk9/yi4qKcOONN+LLL7/EsWPHkJqaim+//RbLli3DLbfcgtGjR2PQoEGYMmUKfvvtN6SlpWHPnj14+eWXmyRcLi4uuO+++5CYmIhdu3bh8ccfxx133IGgoCAJX931Wb58OdRqNcaNG4edO3ciMzMTW7duxZgxYxAaGoo33ngDUVFRuO+++zB79mxs3rwZqamp2L59O7755hsAQGRkJARBwE8//YSCggJUVlZK/KqsQ48ePTBz5kx8+OGHxvueeeYZbNu2Da+99hrOnTuHdevWYfny5Xj22WebPHfmzJn46quv8O23315WI9kmogO57777xFtuueWKj99yyy3ifffdJ4qiKP7xxx9i165dRaVSKfbs2VPcvn27CED8/vvvmzynoqJCVKlU4iOPPGK+wC3knnvuEadNmyaKoiiWlZWJd9xxh+jp6SmGh4eLa9euFXv16iUuWrTIeHxz74eXl5e4Zs0aywVtIaZ4bxzVpEmTxJtuuqnZxw4dOiQCEA8dOiR+//33YseOHUUXFxdx0qRJ4ieffCJe+ifq1VdfFf39/UV3d3dx9uzZ4uOPPy4OHDjQEi/DpGpra8X58+eLvXv3Fr28vESVSiXGxMSIL7/8slhdXS2KoiiWl5eLjz32mBgSEiI6OTmJ4eHh4syZM8WMjAxRFEVx0aJFYq9evcSPPvpIDAkJEV1cXMRbb71VLC4ulvKlmURaWpo4a9YsMSgoyPjaH3vsMbGwsNB4TE1NjfjUU0+JwcHBorOzs9ixY0dx9erVxsdfffVVMSgoSBQEwfh33dE095mXlpYmKpXKJr9b//vf/8Ru3bqJTk5OYkREhPj2229fdq6SkhJRqVSKKpVKrKiouO7YBFG08UlTiWVmZiIqKgoHDx5E7969pQ7nuowfPx4dO3bE8uXLpQ7F6vC9sU5jxoxBUFAQvvjiC6lDsbjFixdj8+bNl01PEdkChy04vV719fXIzc3F/PnzMXDgQJtOPEpKSrBnzx5s37692dbzjozvjfWorq7GypUrMW7cOMjlcmzcuBF//vkn/vjjD6lDI6JWYvLRRv/88w9GjhyJzp07N1l3b4tmz56NgwcP4plnnsEtt9widThWhe+N9RAEAb/88gtef/11qNVqxMTEYNOmTRg9erTUoRFRK3HahYiIiCzKYVe7EBERkTSYfBAREZFF2XXysWTJEvTr1w8eHh4ICAjAlClTLms7LIoiFi9ejJCQELi6umLEiBE4efKk8fHi4mI89thjiImJgUqlQkREBB5//HGUlZU1Oc/NN9+MiIgIuLi4IDg4GPfcc0+T5j9ERESkZ9fJx44dOzBv3jzs27cPf/zxBzQaDcaOHduki+KyZcvw7rvvYvny5Th48CCCgoIwZswYVFRUAABycnKQk5OD//znPzh+/DjWrl2LrVu34oEHHmhyrZEjR+Kbb77B2bNnsWnTJiQnJ+O2226z6OslIiKyBQ5VcFpQUICAgADs2LEDw4YNgyiKCAkJwZNPPokXXngBAKBWqxEYGIilS5di7ty5zZ7H0OGtqqoKCkXzC4a2bNmCKVOmQK1WX7b/CRERkSOz65GPSxmmSgzbLaempiIvLw9jx441HqNUKjF8+PAmve+bO4+np+cVE4/i4mKsX78egwcPZuJBRER0CYdJPkRRxNNPP42hQ4ciNjYWgH6jIgCXbZATGBhofOxSRUVFeO2115odFXnhhRfg5uYGPz8/ZGRk4IcffjDxqyAiIrJ9DpN8PProozh27Bg2btx42WPNbSfc3GZV5eXlmDhxIrp164ZFixZd9vhzzz2HI0eO4Pfff4dcLse9995r81t+ExERmZpDdDh97LHHsGXLFuzcuRNhYWHG+w07P+bl5SE4ONh4f35+/mWjIRUVFRg/fjzc3d3x/fffNzud4u/vD39/f3Tu3Bldu3ZFeHg49u3bh0GDBpnplREREdkeux75EEURjz76KL777jv89ddfiI6ObvJ4dHQ0goKCmuwNUVdXhx07dmDw4MHG+8rLyzF27Fg4Oztjy5YtcHFxadG1AX0BKxEREV1k1yMf8+bNw4YNG/DDDz/Aw8PDWMfh5eUFV1dXCIKAJ598Em+++SY6deqETp064c0334RKpcKMGTMA6Ec8xo4di+rqanz55ZcoLy9HeXk5AKBdu3aQy+U4cOAADhw4gKFDh8LHxwcpKSlYuHAhOnTowFEPIiKiS9j1Utvm6jYAYM2aNZg1axYA/QjFK6+8go8//hglJSUYMGAA/vvf/xqLUrdv346RI0c2e57U1FRERUXh+PHjeOKJJ5CYmIiqqioEBwdj/PjxePnllxEaGmqW10ZERGSr7Dr5ICIiIutj1zUfREREZH2YfBAREZFFMfkgIiIii2LyQURERBbF5IOIiIgsiskHERERWRSTDyIiIrIoJh9ERERkUUw+iIiIyKKYfBAREZFFMfkgIiIii/p/xU5jpdaNWc0AAAAASUVORK5CYII=",
|
| 793 |
+
"text/plain": [
|
| 794 |
+
"<Figure size 640x480 with 1 Axes>"
|
| 795 |
+
]
|
| 796 |
+
},
|
| 797 |
+
"metadata": {},
|
| 798 |
+
"output_type": "display_data"
|
| 799 |
+
}
|
| 800 |
+
],
|
| 801 |
+
"source": [
|
| 802 |
+
"res[0]['forecast'].plot(title='forecasted')"
|
| 803 |
+
]
|
| 804 |
+
}
|
| 805 |
+
],
|
| 806 |
+
"metadata": {
|
| 807 |
+
"kernelspec": {
|
| 808 |
+
"display_name": "demand-forecasting",
|
| 809 |
+
"language": "python",
|
| 810 |
+
"name": "python3"
|
| 811 |
+
},
|
| 812 |
+
"language_info": {
|
| 813 |
+
"codemirror_mode": {
|
| 814 |
+
"name": "ipython",
|
| 815 |
+
"version": 3
|
| 816 |
+
},
|
| 817 |
+
"file_extension": ".py",
|
| 818 |
+
"mimetype": "text/x-python",
|
| 819 |
+
"name": "python",
|
| 820 |
+
"nbconvert_exporter": "python",
|
| 821 |
+
"pygments_lexer": "ipython3",
|
| 822 |
+
"version": "3.10.12"
|
| 823 |
+
},
|
| 824 |
+
"orig_nbformat": 4
|
| 825 |
+
},
|
| 826 |
+
"nbformat": 4,
|
| 827 |
+
"nbformat_minor": 2
|
| 828 |
+
}
|
src/__init__.py
ADDED
|
File without changes
|
src/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (182 Bytes). View file
|
|
|
src/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (198 Bytes). View file
|
|
|
src/__pycache__/avtive_models.cpython-310.pyc
ADDED
|
Binary file (452 Bytes). View file
|
|
|
src/__pycache__/main.cpython-310.pyc
ADDED
|
Binary file (10.3 kB). View file
|
|
|
src/__pycache__/main.cpython-311.pyc
ADDED
|
Binary file (11 kB). View file
|
|
|
src/avtive_models.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
'ceif_plus' : 2023 Sep. currently the model is under review, so not recommended to use this mode - by idsc
|
| 3 |
+
'''
|
| 4 |
+
|
| 5 |
+
active_models = {
|
| 6 |
+
'intermittent':
|
| 7 |
+
[
|
| 8 |
+
'prophet_plus',
|
| 9 |
+
'ceif_plus'
|
| 10 |
+
],
|
| 11 |
+
'continuous':
|
| 12 |
+
[
|
| 13 |
+
'fft_plus',
|
| 14 |
+
'holt_winters_plus',
|
| 15 |
+
'auto_arima_plus',
|
| 16 |
+
'prophet',
|
| 17 |
+
'prophet_plus',
|
| 18 |
+
]
|
| 19 |
+
}
|
src/forecast/Prophet.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
from prophet import Prophet
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class ProphetWrapper():
|
| 7 |
+
def __init__(self):
|
| 8 |
+
pass
|
| 9 |
+
|
| 10 |
+
def forecast(self, ts, n_predict, freq=None):
|
| 11 |
+
model = Prophet()
|
| 12 |
+
train = ts.rename(columns={'datetime': 'ds'})
|
| 13 |
+
|
| 14 |
+
model.fit(train)
|
| 15 |
+
|
| 16 |
+
future = model.make_future_dataframe(periods=n_predict, freq=freq)
|
| 17 |
+
|
| 18 |
+
forecasted = model.predict(future)
|
| 19 |
+
|
| 20 |
+
print(forecasted[-n_predict:])
|
| 21 |
+
|
| 22 |
+
return forecasted[-n_predict:]
|
src/forecast/__init__.py
ADDED
|
File without changes
|
src/forecast/__pycache__/Prophet.cpython-310.pyc
ADDED
|
Binary file (937 Bytes). View file
|
|
|
src/forecast/__pycache__/Prophet.cpython-311.pyc
ADDED
|
Binary file (1.29 kB). View file
|
|
|
src/forecast/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (191 Bytes). View file
|
|
|
src/forecast/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (207 Bytes). View file
|
|
|
src/functions/__init__.py
ADDED
|
File without changes
|
src/functions/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (192 Bytes). View file
|
|
|
src/functions/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (208 Bytes). View file
|
|
|
src/functions/__pycache__/check_input.cpython-310.pyc
ADDED
|
Binary file (350 Bytes). View file
|
|
|
src/functions/__pycache__/check_input.cpython-311.pyc
ADDED
|
Binary file (437 Bytes). View file
|
|
|
src/functions/__pycache__/itmtt_scores.cpython-310.pyc
ADDED
|
Binary file (759 Bytes). View file
|
|
|
src/functions/__pycache__/mase.cpython-310.pyc
ADDED
|
Binary file (516 Bytes). View file
|
|
|
src/functions/__pycache__/order_qty_rmse.cpython-310.pyc
ADDED
|
Binary file (545 Bytes). View file
|
|
|
src/functions/check_input.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
|
| 3 |
+
def check_input(df):
|
| 4 |
+
pd.infer_freq(df)
|
| 5 |
+
return
|
src/functions/itmtt_scores.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def interm_scores(grdt_sr:list, pred_sr:list):
|
| 2 |
+
## this function calculates
|
| 3 |
+
## • Quantity score
|
| 4 |
+
## • Quantity rate score
|
| 5 |
+
## • Timing score
|
| 6 |
+
#print(grdt_sr, pred_sr)
|
| 7 |
+
lgrdt = len(grdt_sr)
|
| 8 |
+
assert lgrdt == len(pred_sr)
|
| 9 |
+
cnt_01match = 0
|
| 10 |
+
grdt_value = 0
|
| 11 |
+
pred_value = 0
|
| 12 |
+
cnt_grdt1 = 0
|
| 13 |
+
cnt_pred1 = 0
|
| 14 |
+
for i in range(lgrdt):
|
| 15 |
+
|
| 16 |
+
if (grdt_sr[i]==0 and pred_sr[i]==0) or (grdt_sr[i]> 0 and pred_sr[i]>0):
|
| 17 |
+
cnt_01match += 1
|
| 18 |
+
|
| 19 |
+
cnt_grdt1 += 1 if grdt_sr[i]>0 else 0
|
| 20 |
+
cnt_pred1 += 1 if pred_sr[i]>0 else 0
|
| 21 |
+
grdt_value += grdt_sr[i]
|
| 22 |
+
pred_value += pred_sr[i]
|
| 23 |
+
#print("Calculating:\nQuantity score, Quantity rate score, Timing score")
|
| 24 |
+
if cnt_grdt1 == 0 and cnt_pred1 == 0: # this indicate grdt_value=pred_value=0
|
| 25 |
+
return 1.0, 1.0, 1.0*cnt_01match / lgrdt
|
| 26 |
+
else:
|
| 27 |
+
return 1.0*min(cnt_grdt1, cnt_pred1)/max(cnt_grdt1, cnt_pred1),\
|
| 28 |
+
1.0*min(grdt_value, pred_value)/max(grdt_value, pred_value),\
|
| 29 |
+
1.0*cnt_01match / lgrdt
|
src/functions/mase.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def MASE(Actual, Predicted):
|
| 5 |
+
'''
|
| 6 |
+
Mean Absolute Scaled Error (MASE)
|
| 7 |
+
'''
|
| 8 |
+
values = []
|
| 9 |
+
for i in range(1, len(Actual)):
|
| 10 |
+
values.append(abs(Actual[i] - Predicted[i]) /
|
| 11 |
+
(abs(Actual[i] - Actual[i - 1]) / (len(Actual) - 1)))
|
| 12 |
+
|
| 13 |
+
return numpy.mean(values)
|
src/functions/order_qty_rmse.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from sklearn.metrics import mean_squared_error
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def order_qty_rmse(actual, predicted):
|
| 7 |
+
actu = []
|
| 8 |
+
pred = []
|
| 9 |
+
for i, a in enumerate(actual):
|
| 10 |
+
if not a == 0:
|
| 11 |
+
actu.append(actual[i])
|
| 12 |
+
pred.append(predicted[i])
|
| 13 |
+
return np.sqrt(mean_squared_error(actu, pred))
|
src/functions/sort_res.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def sort_res_by_rmse(res):
|
| 2 |
+
pass
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def sort_res_by_(res):
|
| 6 |
+
pass
|