File size: 11,199 Bytes
9ddee9f
 
 
c92b736
9ddee9f
 
 
c92b736
 
9ddee9f
 
 
 
 
 
 
 
 
 
 
 
c92b736
 
 
 
 
 
9ddee9f
ac548e2
9ddee9f
 
 
 
2086f52
8cf4695
 
9ddee9f
 
8cf4695
9ddee9f
c92b736
8cf4695
c92b736
 
 
8cf4695
 
 
 
 
 
 
 
 
 
9ddee9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c92b736
 
 
 
 
 
 
 
 
 
 
9ddee9f
 
 
 
 
 
 
c92b736
 
9ddee9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cf4695
 
 
9ddee9f
 
8cf4695
9ddee9f
 
 
 
 
 
 
 
 
 
 
 
8cf4695
2086f52
 
8cf4695
 
 
 
 
 
 
 
 
 
 
 
 
 
9ddee9f
 
8cf4695
 
 
9ddee9f
 
 
 
 
 
 
 
 
 
c92b736
 
 
 
9ddee9f
 
c92b736
9ddee9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cf4695
9ddee9f
 
 
 
 
8cf4695
9ddee9f
 
c92b736
 
 
 
 
 
 
 
 
 
 
9ddee9f
8cf4695
 
 
9ddee9f
 
 
 
 
 
8cf4695
9ddee9f
 
8cf4695
9ddee9f
 
8cf4695
c92b736
 
8cf4695
 
 
9ddee9f
 
c92b736
9ddee9f
c92b736
9ddee9f
c92b736
9ddee9f
c92b736
 
9ddee9f
8cf4695
9ddee9f
 
c92b736
8cf4695
c92b736
 
 
 
8cf4695
 
c92b736
8cf4695
c92b736
 
 
8cf4695
c92b736
 
 
8cf4695
 
 
 
c92b736
 
 
 
 
 
 
 
 
 
 
8cf4695
c92b736
 
 
 
8cf4695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c92b736
 
 
 
 
 
8cf4695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import pandas as pd
import math
from src.main import DemandForecasting
import matplotlib.pyplot as plt

import gradio as gr

from .helpers import reset_index


class GradioApp():
    def __init__(self):
        self.forecaster = DemandForecasting()

        self.ts_data = None  # Time series data for model training and forecasting
        self.model_data = None
        self.skus = None

        self.forecast_horizon = 1

    def __set_ts_data(self, path):
        self.ts_data = pd.read_csv(
            path,
            index_col='datetime',
            parse_dates=['datetime'])

        self.skus = self.ts_data['sku'].unique().tolist()

        self.model_data = pd.DataFrame(
            {
                'sku': self.skus,
                'best_model': '',
                'characteristic': '',
                # 'predictability': '',
                'RMSE': '',
                'Intermittent Scores':''
            }
        )
        print('[__set_ts_data] End')

    def __set_forecast(self, forecast: pd.DataFrame):
        print('__set_forecast')
        self.forecast = forecast.set_index('datetime')
        self.forecast.index = pd.to_datetime(self.forecast.index)

    def __set_model_selection_res(self, model_selection_reses: pd.DataFrame):
        '''
        self.model_selection_res will be identical to self.forecast
        keep tracking on this just to visualize the model selection result
        '''
        print('__set_model_selection_res')
        self.model_selection_res = model_selection_reses
        # self.model_selection_res = pd.to_datetime(
        #     self.model_selection_res.index)

    def __set_model(self, model_df):
        if (self.skus is None):
            raise gr.Error(
                'Incorrect SKUs, time series data must be loaded and SKUs must match.')
        if (set(self.skus) - set(model_df['sku']) != set()):
            raise gr.Error(
                'SKUs in provided model select data does not match SKUs in timeseries data.'
            )

        self.model_data = model_df

    def btn_load_data__click(self):
        print('btn_load_data__click')
        self.__set_ts_data('./data/demand_forecasting_demo_data.csv')

        return (self.update__df_ts_data(),
                self.update__df_model_data(),
                self.update__file_model_data(),
                self.update__slider_forecast_horizon(),
                self.update__md_ts_data_info())

    def btn_load_demo_result__click(self):
        forecast = pd.read_csv(
            './data/demand_forecasting_demo_result.csv')
        self.__set_forecast(forecast)

        return (self.update__df_forecast(),
                self.update__file_forecast(),
                self.update__dropdown_forecast())

    def file_upload_data__upload(self, file):
        self.__set_ts_data(file.name)

        return (self.update__df_ts_data(),
                self.update__df_model_data(),
                self.update__file_model_data(),
                self.update__slider_forecast_horizon(),
                self.update__md_ts_data_info())

    def file_upload_model_data__upload(self, file):
        model_df = pd.read_csv(file.name)
        self.__set_model(model_df)

        return (self.update__df_model_data(),
                self.update__file_model_data())

    def btn_load_model_data__click(self):

        model_df = pd.read_csv(
            './data/demand_forecasting_demo_models.csv')
        self.__set_model(model_df)

        return (self.update__df_model_data(),
                self.update__file_model_data())

    def btn_model_selection__click(self):
        print('btn_model_selection__click')
        ts_data = reset_index(self.ts_data)

        model_selection_reses = []
        for sku in self.skus:
            print('Selecting model ', sku)
            data = ts_data[ts_data['sku'] == sku]

            # ----------------- #
            # Feature Selection #
            # ----------------- #
            res = self.forecaster.forecast(
                data, 0, model='all', run_test=True)

            self.model_data.loc[self.model_data['sku'] ==
                                sku, 'characteristic'] = res['characteristic']

            self.model_data.loc[self.model_data['sku'] ==
                                sku, 'best_model'] = res['forecast'][0]['model']

            # self.model_data.loc[self.model_data['sku'] ==
            #                     sku, 'predictability'] = res['predictability']
            
            self.model_data.loc[self.model_data['sku'] ==
                                sku, 'RMSE'] = round(res['forecast'][0]['RMSE'], 2)
            
            self.model_data.loc[self.model_data['sku'] ==
                                sku, 'Intermittent Scores'] = str(res['forecast'][0]['interm_scores'])

            model_selection_res = res['forecast'][0]['test'].drop(
                columns='truth').rename(columns={'test': 'y'})

            model_selection_res['sku'] = sku
            model_selection_reses.append(model_selection_res)

        self.__set_model_selection_res(pd.concat(model_selection_reses))

        return (self.update__df_model_data(),
                self.update__file_model_data(),
                self.update__accordion_model_selection(),
                self.update__dropdown_model_selection())

    def slider_forecast_horizon__update(self, slider):
        # print('slider_forecast_horizon__update ', slider)
        self.forecast_horizon = slider

    def btn_forecast__click(self):
        # ----------- #
        # Forecasting #
        # ----------- #
        forecasts = []

        # Reset data index and format the datetime column to string
        ts_data = reset_index(self.ts_data)

        for sku in self.skus:
            print('Forecasting ', sku)
            data = ts_data[ts_data['sku'] == sku]

            # Drop sku column first, for now the pipeline doesn't take this column
            data = data.drop('sku', axis=1)

            model_data = self.model_data[self.model_data['sku'] == sku]
            print(model_data)
            model = model_data['best_model'].tolist()[0]
            characteristic = model_data['characteristic'].tolist()[0]

            # ----------------- #
            # Feature Selection #
            # ----------------- #
            print(model, characteristic)
            res = self.forecaster.forecast(
                data, self.forecast_horizon, model=model, run_test=False, characteristic=characteristic)
            print(res)
            forecast = pd.DataFrame(
                res['forecast'][0]['forecast'], columns=['datetime', 'y'])
            forecast['sku'] = sku
            forecasts.append(forecast)

        self.__set_forecast(pd.concat(forecasts))

        return (self.update__df_forecast(),
                self.update__file_forecast(),
                self.update__dropdown_forecast())

    def df_ts_data__change(self):
        return self.update__dropdown_ts_data()

    def dropdown_ts_data__select(self, skus):
        return self.update__plot_ts_data(skus)

    def dropdown_forecast__select(self, sku):
        return self.update__plot_forecast(sku)

    def dropdown_model_selection__select(self, sku):
        return self.update__plot_model_selection(sku)

    # ======== #
    # Updaters #
    # ======== #

    def update__file_model_data(self):
        self.model_data.to_csv('./best_models.csv', index=False)
        return gr.File(value='./best_models.csv')

    def update__df_model_data(self):
        return gr.Dataframe(value=self.model_data)

    def update__df_ts_data(self):
        return gr.Dataframe(value=reset_index(self.ts_data))

    def update__df_forecast(self):
        print('upupdate__df_forecastda')
        print(self.forecast)
        return gr.Dataframe(value = reset_index(self.forecast))

    def update__slider_forecast_horizon(self):
        skus = self.skus

        # Set max horizon to be the 20% of the shortest SKU data's length
        max_horizon = int(
            min(self.ts_data[self.ts_data['sku'] == sku].shape[0] for sku in skus) * 0.2)

        # max_horizon = int(
        #     self.ts_data[self.ts_data['sku'] == sku].shape[0] * 0.2)

        return gr.Slider(maximum=max_horizon)

    def update__file_forecast(self):
        reset_index(self.forecast).to_csv('./forecast_result.csv', index=False)
        return gr.File(value='./forecast_result.csv')

    def update__md_ts_data_info(self):
        md = f''' 
        ### Data Description
        Columns: **{reset_index(self.ts_data).columns.tolist()}**
        Size: {' | '.join([str(sku) + ' : **' + str(self.ts_data[self.ts_data["sku"] == sku].shape[0]) + '**' for sku in self.skus])}
        '''
        return gr.Markdown(md)

    def update__dropdown_ts_data(self):
        # print(type(self.skus))
        return gr.Dropdown(choices=self.skus)

    def update__dropdown_forecast(self):
        skus = self.forecast['sku'].unique().tolist()
        return gr.Dropdown(choices=skus)

    def update__dropdown_model_selection(self):
        return gr.Dropdown(choices=self.skus)

    def update__plot_ts_data(self, skus):
        # print('update__plot_ts_data')
        fig, ax = plt.subplots(figsize=(12, 4))

        for sku in skus:
            ax.plot(self.ts_data[self.ts_data['sku'] == sku]['y'], label=sku)

        ax.legend(loc='upper left')
        fig.tight_layout()

        return gr.Plot(fig)

    def update__plot_forecast(self, sku):
        fig, ax = plt.subplots(figsize=(12, 4))

        '''
        A trick been used here, 
        to connect the plotting lines, for the historical part,
        have to concat with the 1st data in the forecasting result.
        Because the forecasting result already have date time index,
        using head(1) to get the first element of the forecasting result
        '''

        ax.plot(pd.concat(
            [
                self.ts_data[self.ts_data['sku'] == sku],
                self.forecast[self.forecast['sku'] == sku].head(1)
            ])['y'],

            label=f'{sku} - historical')

        ax.plot(self.forecast[self.forecast['sku']
                == sku]['y'], label=f'{sku} - forecast')

        ax.legend(loc='upper left')
        fig.tight_layout()

        return gr.Plot(fig)

    def update__plot_model_selection(self, sku):
        fig, ax = plt.subplots(figsize=(12, 4))

        '''
        Reason need to filter out the last index is - sometimes IDSC model cannot 
        forecast the full required data size. Have to crop out the tail part.
        '''
        idx = self.model_selection_res[self.model_selection_res['sku'] == sku].index

        ax.plot(self.ts_data[
            (self.ts_data['sku'] == sku) &
            (self.ts_data.index <= idx[-1])
        ]['y'], label=f'{sku} - ground truth')

        ax.plot(self.model_selection_res[self.model_selection_res['sku']
                == sku]['y'], label=f'{sku} - model result')

        ax.axvline(x=idx[0], ymin=0.05, ymax=0.95, ls='--')

        ax.legend(loc='upper left')
        fig.tight_layout()

        return gr.Plot(fig)

    def update__accordion_model_selection(self):
        return gr.Accordion(visible=True)