Spaces:
Runtime error
Runtime error
File size: 11,199 Bytes
9ddee9f c92b736 9ddee9f c92b736 9ddee9f c92b736 9ddee9f ac548e2 9ddee9f 2086f52 8cf4695 9ddee9f 8cf4695 9ddee9f c92b736 8cf4695 c92b736 8cf4695 9ddee9f c92b736 9ddee9f c92b736 9ddee9f 8cf4695 9ddee9f 8cf4695 9ddee9f 8cf4695 2086f52 8cf4695 9ddee9f 8cf4695 9ddee9f c92b736 9ddee9f c92b736 9ddee9f 8cf4695 9ddee9f 8cf4695 9ddee9f c92b736 9ddee9f 8cf4695 9ddee9f 8cf4695 9ddee9f 8cf4695 9ddee9f 8cf4695 c92b736 8cf4695 9ddee9f c92b736 9ddee9f c92b736 9ddee9f c92b736 9ddee9f c92b736 9ddee9f 8cf4695 9ddee9f c92b736 8cf4695 c92b736 8cf4695 c92b736 8cf4695 c92b736 8cf4695 c92b736 8cf4695 c92b736 8cf4695 c92b736 8cf4695 c92b736 8cf4695 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import pandas as pd
import math
from src.main import DemandForecasting
import matplotlib.pyplot as plt
import gradio as gr
from .helpers import reset_index
class GradioApp():
def __init__(self):
self.forecaster = DemandForecasting()
self.ts_data = None # Time series data for model training and forecasting
self.model_data = None
self.skus = None
self.forecast_horizon = 1
def __set_ts_data(self, path):
self.ts_data = pd.read_csv(
path,
index_col='datetime',
parse_dates=['datetime'])
self.skus = self.ts_data['sku'].unique().tolist()
self.model_data = pd.DataFrame(
{
'sku': self.skus,
'best_model': '',
'characteristic': '',
# 'predictability': '',
'RMSE': '',
'Intermittent Scores':''
}
)
print('[__set_ts_data] End')
def __set_forecast(self, forecast: pd.DataFrame):
print('__set_forecast')
self.forecast = forecast.set_index('datetime')
self.forecast.index = pd.to_datetime(self.forecast.index)
def __set_model_selection_res(self, model_selection_reses: pd.DataFrame):
'''
self.model_selection_res will be identical to self.forecast
keep tracking on this just to visualize the model selection result
'''
print('__set_model_selection_res')
self.model_selection_res = model_selection_reses
# self.model_selection_res = pd.to_datetime(
# self.model_selection_res.index)
def __set_model(self, model_df):
if (self.skus is None):
raise gr.Error(
'Incorrect SKUs, time series data must be loaded and SKUs must match.')
if (set(self.skus) - set(model_df['sku']) != set()):
raise gr.Error(
'SKUs in provided model select data does not match SKUs in timeseries data.'
)
self.model_data = model_df
def btn_load_data__click(self):
print('btn_load_data__click')
self.__set_ts_data('./data/demand_forecasting_demo_data.csv')
return (self.update__df_ts_data(),
self.update__df_model_data(),
self.update__file_model_data(),
self.update__slider_forecast_horizon(),
self.update__md_ts_data_info())
def btn_load_demo_result__click(self):
forecast = pd.read_csv(
'./data/demand_forecasting_demo_result.csv')
self.__set_forecast(forecast)
return (self.update__df_forecast(),
self.update__file_forecast(),
self.update__dropdown_forecast())
def file_upload_data__upload(self, file):
self.__set_ts_data(file.name)
return (self.update__df_ts_data(),
self.update__df_model_data(),
self.update__file_model_data(),
self.update__slider_forecast_horizon(),
self.update__md_ts_data_info())
def file_upload_model_data__upload(self, file):
model_df = pd.read_csv(file.name)
self.__set_model(model_df)
return (self.update__df_model_data(),
self.update__file_model_data())
def btn_load_model_data__click(self):
model_df = pd.read_csv(
'./data/demand_forecasting_demo_models.csv')
self.__set_model(model_df)
return (self.update__df_model_data(),
self.update__file_model_data())
def btn_model_selection__click(self):
print('btn_model_selection__click')
ts_data = reset_index(self.ts_data)
model_selection_reses = []
for sku in self.skus:
print('Selecting model ', sku)
data = ts_data[ts_data['sku'] == sku]
# ----------------- #
# Feature Selection #
# ----------------- #
res = self.forecaster.forecast(
data, 0, model='all', run_test=True)
self.model_data.loc[self.model_data['sku'] ==
sku, 'characteristic'] = res['characteristic']
self.model_data.loc[self.model_data['sku'] ==
sku, 'best_model'] = res['forecast'][0]['model']
# self.model_data.loc[self.model_data['sku'] ==
# sku, 'predictability'] = res['predictability']
self.model_data.loc[self.model_data['sku'] ==
sku, 'RMSE'] = round(res['forecast'][0]['RMSE'], 2)
self.model_data.loc[self.model_data['sku'] ==
sku, 'Intermittent Scores'] = str(res['forecast'][0]['interm_scores'])
model_selection_res = res['forecast'][0]['test'].drop(
columns='truth').rename(columns={'test': 'y'})
model_selection_res['sku'] = sku
model_selection_reses.append(model_selection_res)
self.__set_model_selection_res(pd.concat(model_selection_reses))
return (self.update__df_model_data(),
self.update__file_model_data(),
self.update__accordion_model_selection(),
self.update__dropdown_model_selection())
def slider_forecast_horizon__update(self, slider):
# print('slider_forecast_horizon__update ', slider)
self.forecast_horizon = slider
def btn_forecast__click(self):
# ----------- #
# Forecasting #
# ----------- #
forecasts = []
# Reset data index and format the datetime column to string
ts_data = reset_index(self.ts_data)
for sku in self.skus:
print('Forecasting ', sku)
data = ts_data[ts_data['sku'] == sku]
# Drop sku column first, for now the pipeline doesn't take this column
data = data.drop('sku', axis=1)
model_data = self.model_data[self.model_data['sku'] == sku]
print(model_data)
model = model_data['best_model'].tolist()[0]
characteristic = model_data['characteristic'].tolist()[0]
# ----------------- #
# Feature Selection #
# ----------------- #
print(model, characteristic)
res = self.forecaster.forecast(
data, self.forecast_horizon, model=model, run_test=False, characteristic=characteristic)
print(res)
forecast = pd.DataFrame(
res['forecast'][0]['forecast'], columns=['datetime', 'y'])
forecast['sku'] = sku
forecasts.append(forecast)
self.__set_forecast(pd.concat(forecasts))
return (self.update__df_forecast(),
self.update__file_forecast(),
self.update__dropdown_forecast())
def df_ts_data__change(self):
return self.update__dropdown_ts_data()
def dropdown_ts_data__select(self, skus):
return self.update__plot_ts_data(skus)
def dropdown_forecast__select(self, sku):
return self.update__plot_forecast(sku)
def dropdown_model_selection__select(self, sku):
return self.update__plot_model_selection(sku)
# ======== #
# Updaters #
# ======== #
def update__file_model_data(self):
self.model_data.to_csv('./best_models.csv', index=False)
return gr.File(value='./best_models.csv')
def update__df_model_data(self):
return gr.Dataframe(value=self.model_data)
def update__df_ts_data(self):
return gr.Dataframe(value=reset_index(self.ts_data))
def update__df_forecast(self):
print('upupdate__df_forecastda')
print(self.forecast)
return gr.Dataframe(value = reset_index(self.forecast))
def update__slider_forecast_horizon(self):
skus = self.skus
# Set max horizon to be the 20% of the shortest SKU data's length
max_horizon = int(
min(self.ts_data[self.ts_data['sku'] == sku].shape[0] for sku in skus) * 0.2)
# max_horizon = int(
# self.ts_data[self.ts_data['sku'] == sku].shape[0] * 0.2)
return gr.Slider(maximum=max_horizon)
def update__file_forecast(self):
reset_index(self.forecast).to_csv('./forecast_result.csv', index=False)
return gr.File(value='./forecast_result.csv')
def update__md_ts_data_info(self):
md = f'''
### Data Description
Columns: **{reset_index(self.ts_data).columns.tolist()}**
Size: {' | '.join([str(sku) + ' : **' + str(self.ts_data[self.ts_data["sku"] == sku].shape[0]) + '**' for sku in self.skus])}
'''
return gr.Markdown(md)
def update__dropdown_ts_data(self):
# print(type(self.skus))
return gr.Dropdown(choices=self.skus)
def update__dropdown_forecast(self):
skus = self.forecast['sku'].unique().tolist()
return gr.Dropdown(choices=skus)
def update__dropdown_model_selection(self):
return gr.Dropdown(choices=self.skus)
def update__plot_ts_data(self, skus):
# print('update__plot_ts_data')
fig, ax = plt.subplots(figsize=(12, 4))
for sku in skus:
ax.plot(self.ts_data[self.ts_data['sku'] == sku]['y'], label=sku)
ax.legend(loc='upper left')
fig.tight_layout()
return gr.Plot(fig)
def update__plot_forecast(self, sku):
fig, ax = plt.subplots(figsize=(12, 4))
'''
A trick been used here,
to connect the plotting lines, for the historical part,
have to concat with the 1st data in the forecasting result.
Because the forecasting result already have date time index,
using head(1) to get the first element of the forecasting result
'''
ax.plot(pd.concat(
[
self.ts_data[self.ts_data['sku'] == sku],
self.forecast[self.forecast['sku'] == sku].head(1)
])['y'],
label=f'{sku} - historical')
ax.plot(self.forecast[self.forecast['sku']
== sku]['y'], label=f'{sku} - forecast')
ax.legend(loc='upper left')
fig.tight_layout()
return gr.Plot(fig)
def update__plot_model_selection(self, sku):
fig, ax = plt.subplots(figsize=(12, 4))
'''
Reason need to filter out the last index is - sometimes IDSC model cannot
forecast the full required data size. Have to crop out the tail part.
'''
idx = self.model_selection_res[self.model_selection_res['sku'] == sku].index
ax.plot(self.ts_data[
(self.ts_data['sku'] == sku) &
(self.ts_data.index <= idx[-1])
]['y'], label=f'{sku} - ground truth')
ax.plot(self.model_selection_res[self.model_selection_res['sku']
== sku]['y'], label=f'{sku} - model result')
ax.axvline(x=idx[0], ymin=0.05, ymax=0.95, ls='--')
ax.legend(loc='upper left')
fig.tight_layout()
return gr.Plot(fig)
def update__accordion_model_selection(self):
return gr.Accordion(visible=True)
|