Spaces:
Sleeping
Sleeping
| import onnxruntime | |
| import numpy as np | |
| import cv2 | |
| from abc import ABC, abstractmethod | |
| from typing import Any, Tuple, Union, List | |
| class BaseONNX(ABC): | |
| def __init__(self, model_path: str): | |
| """初始化ONNX模型基类 | |
| Args: | |
| model_path (str): ONNX模型路径 | |
| input_size (tuple): 模型输入尺寸 (width, height) | |
| """ | |
| self.session = onnxruntime.InferenceSession(model_path) | |
| self.input_name = self.session.get_inputs()[0].name | |
| def load_image(self, image: Union[cv2.UMat, str]) -> cv2.UMat: | |
| """加载图像 | |
| Args: | |
| image (Union[cv2.UMat, str]): 图像路径或cv2图像对象 | |
| Returns: | |
| cv2.UMat: 加载的图像 | |
| """ | |
| if isinstance(image, str): | |
| return cv2.imread(image) | |
| return image.copy() | |
| def preprocess_image(self, img_bgr: cv2.UMat, *args, **kwargs) -> np.ndarray: | |
| """图像预处理抽象方法 | |
| Args: | |
| img_bgr (cv2.UMat): BGR格式的输入图像 | |
| Returns: | |
| np.ndarray: 预处理后的图像 | |
| """ | |
| pass | |
| def run_inference(self, image: np.ndarray) -> Any: | |
| """运行推理的抽象方法 | |
| Args: | |
| image (np.ndarray): 预处理后的输入图像 | |
| Returns: | |
| Any: 模型输出结果 | |
| """ | |
| pass | |
| def pred(self, image: Union[cv2.UMat, str], *args, **kwargs) -> Any: | |
| """预测的抽象方法 | |
| Args: | |
| image (Union[cv2.UMat, str]): 输入图像或图像路径 | |
| Returns: | |
| Any: 预测结果 | |
| """ | |
| pass | |
| def draw_pred(self, img: cv2.UMat, *args, **kwargs) -> cv2.UMat: | |
| """绘制预测结果的抽象方法 | |
| Args: | |
| img (cv2.UMat): 要绘制的图像 | |
| Returns: | |
| cv2.UMat: 绘制结果后的图像 | |
| """ | |
| pass | |
| def check_images_list(self, images: List[Union[cv2.UMat, str, np.ndarray]]): | |
| """ | |
| 检查图像列表是否有效 | |
| """ | |
| for image in images: | |
| if not isinstance(image, cv2.UMat) and not isinstance(image, str) and not isinstance(image, np.ndarray): | |
| raise ValueError("The images must be a list of cv2.UMat or str or np.ndarray.") | |