Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	update preprocess
Browse files- app.py +6 -4
- {onnx → counting}/apgcc.onnx +0 -0
- {onnx → counting}/base_onnx.py +0 -0
- {onnx → counting}/counting.py +5 -3
    	
        app.py
    CHANGED
    
    | @@ -1,9 +1,9 @@ | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            import time
         | 
| 3 | 
            -
            from  | 
| 4 |  | 
| 5 |  | 
| 6 | 
            -
            counting = Counting(" | 
| 7 |  | 
| 8 |  | 
| 9 | 
             
            def filter_with_threshold(scores, points, threshold):
         | 
| @@ -19,12 +19,14 @@ def filter_with_threshold(scores, points, threshold): | |
| 19 | 
             
            def pred(img, threshold):
         | 
| 20 | 
             
                # 计算处理时间
         | 
| 21 | 
             
                start_at = time.time()
         | 
|  | |
|  | |
| 22 |  | 
| 23 | 
            -
                scores, points = counting. | 
| 24 |  | 
| 25 | 
             
                scores, points = filter_with_threshold(scores, points, threshold)
         | 
| 26 |  | 
| 27 | 
            -
                draw = counting.draw_pred( | 
| 28 |  | 
| 29 | 
             
                elapsed_time = time.time() - start_at
         | 
| 30 | 
             
                use_time = f"use: {elapsed_time:.3f}s"
         | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            import time
         | 
| 3 | 
            +
            from counting.counting import Counting
         | 
| 4 |  | 
| 5 |  | 
| 6 | 
            +
            counting = Counting("counting/apgcc.onnx")
         | 
| 7 |  | 
| 8 |  | 
| 9 | 
             
            def filter_with_threshold(scores, points, threshold):
         | 
|  | |
| 19 | 
             
            def pred(img, threshold):
         | 
| 20 | 
             
                # 计算处理时间
         | 
| 21 | 
             
                start_at = time.time()
         | 
| 22 | 
            +
                
         | 
| 23 | 
            +
                processed_image, processed_image_original = counting.preprocess_image(img, True)
         | 
| 24 |  | 
| 25 | 
            +
                scores, points = counting.run_inference(processed_image)
         | 
| 26 |  | 
| 27 | 
             
                scores, points = filter_with_threshold(scores, points, threshold)
         | 
| 28 |  | 
| 29 | 
            +
                draw = counting.draw_pred(processed_image_original, scores, points)
         | 
| 30 |  | 
| 31 | 
             
                elapsed_time = time.time() - start_at
         | 
| 32 | 
             
                use_time = f"use: {elapsed_time:.3f}s"
         | 
    	
        {onnx → counting}/apgcc.onnx
    RENAMED
    
    | 
            File without changes
         | 
    	
        {onnx → counting}/base_onnx.py
    RENAMED
    
    | 
            File without changes
         | 
    	
        {onnx → counting}/counting.py
    RENAMED
    
    | @@ -27,6 +27,8 @@ class Counting(BaseONNX): | |
| 27 | 
             
                        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
         | 
| 28 | 
             
                    else:
         | 
| 29 | 
             
                        img = img
         | 
|  | |
|  | |
| 30 |  | 
| 31 | 
             
                    # Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
         | 
| 32 | 
             
                    # 转换为 float32 类型
         | 
| @@ -56,14 +58,14 @@ class Counting(BaseONNX): | |
| 56 |  | 
| 57 | 
             
                    if h != new_h or w != new_w:
         | 
| 58 | 
             
                        img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
         | 
| 59 | 
            -
             | 
| 60 | 
             
                    # 调整维度顺序 (H,W,C) -> (C,H,W)
         | 
| 61 | 
             
                    img = np.transpose(img, (2, 0, 1))
         | 
| 62 |  | 
| 63 | 
             
                    # 添加 batch 维度
         | 
| 64 | 
             
                    img = np.expand_dims(img, axis=0)
         | 
| 65 |  | 
| 66 | 
            -
                    return img
         | 
| 67 |  | 
| 68 | 
             
                def run_inference(self, image: np.ndarray) -> any:
         | 
| 69 | 
             
                    """
         | 
| @@ -97,7 +99,7 @@ class Counting(BaseONNX): | |
| 97 | 
             
                    else:
         | 
| 98 | 
             
                        img_bgr = image.copy()
         | 
| 99 |  | 
| 100 | 
            -
                    processed_image = self.preprocess_image(img_bgr, is_rgb)
         | 
| 101 |  | 
| 102 | 
             
                    scores, points = self.run_inference(processed_image)
         | 
| 103 |  | 
|  | |
| 27 | 
             
                        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
         | 
| 28 | 
             
                    else:
         | 
| 29 | 
             
                        img = img
         | 
| 30 | 
            +
                        
         | 
| 31 | 
            +
                    img_copy = img.copy()
         | 
| 32 |  | 
| 33 | 
             
                    # Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
         | 
| 34 | 
             
                    # 转换为 float32 类型
         | 
|  | |
| 58 |  | 
| 59 | 
             
                    if h != new_h or w != new_w:
         | 
| 60 | 
             
                        img = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
         | 
| 61 | 
            +
                        img_copy = cv2.resize(img_copy, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
         | 
| 62 | 
             
                    # 调整维度顺序 (H,W,C) -> (C,H,W)
         | 
| 63 | 
             
                    img = np.transpose(img, (2, 0, 1))
         | 
| 64 |  | 
| 65 | 
             
                    # 添加 batch 维度
         | 
| 66 | 
             
                    img = np.expand_dims(img, axis=0)
         | 
| 67 |  | 
| 68 | 
            +
                    return img, img_copy
         | 
| 69 |  | 
| 70 | 
             
                def run_inference(self, image: np.ndarray) -> any:
         | 
| 71 | 
             
                    """
         | 
|  | |
| 99 | 
             
                    else:
         | 
| 100 | 
             
                        img_bgr = image.copy()
         | 
| 101 |  | 
| 102 | 
            +
                    processed_image, _ = self.preprocess_image(img_bgr, is_rgb)
         | 
| 103 |  | 
| 104 | 
             
                    scores, points = self.run_inference(processed_image)
         | 
| 105 |  |