Spaces:
Sleeping
Sleeping
File size: 8,156 Bytes
efafe9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
# import onnxruntime
import numpy as np
import cv2
from typing import Tuple, List, Union
from .base_onnx import BaseONNX
class COMMON_DETECTION_ONNX(BaseONNX):
def __init__(self,
model_path,
labels: List[str],
# 输入图片大小
input_size=(640, 640), # (w, h)
iou_threshold: float = 0.5,
score_threshold: float = 0.2,
):
super().__init__(model_path, input_size)
self.labels = labels
self.label_colors = []
for i in range(len(labels)):
self.label_colors.append((np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)))
self.iou_threshold = iou_threshold
self.score_threshold = score_threshold
def preprocess_image(self, image: cv2.UMat, to_rgb: bool = True) -> Tuple[np.ndarray, float, Tuple[int, int]]:
if to_rgb:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
target_size = self.input_size
ori_shape = image.shape[:2]
# 1. Resize with keep_ratio=True
h, w = image.shape[:2]
scale = min(target_size[0] / h, target_size[1] / w)
new_h, new_w = int(h * scale), int(w * scale)
resized = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
# 2. Pad to 640x640
pad_h = target_size[0] - new_h
pad_w = target_size[1] - new_w
top, bottom = 0, pad_h
left, right = 0, pad_w
padded = cv2.copyMakeBorder(
resized, top, bottom, left, right,
cv2.BORDER_CONSTANT, value=(114, 114, 114)
)
# img = img.astype(np.float32)
# 3. Normalize (BGR format, matching mmdet pipeline)
mean = np.array([103.53, 116.28, 123.675], dtype=np.float32)
std = np.array([57.375, 57.12, 58.395], dtype=np.float32)
normalized = (padded.astype(np.float32) - mean) / std
# 4. Convert to (C, H, W) and add batch dimension
input_tensor = normalized.transpose(2, 0, 1)[np.newaxis, ...]
return input_tensor, scale, ori_shape
def post_bbox(self, boxes, origin_shape, scale):
"""
将onnx的输出结果转换为mmdet的输出结果, 与 preprocess_image 中 的预处理相反
boxes: (N, 4) x1, y1, x2, y2
origin_shape: (H, W)
scale: 缩放因子,从 preprocess_image 获取
return: (N, 4) x1, y1, x2, y2
"""
if boxes is None or len(boxes) == 0:
return boxes
boxes = boxes.copy()
# 如果没有提供scale,假设是640x640输入,根据origin_shape计算scale
if scale is None:
target_size = 640
h, w = origin_shape
scale = min(target_size / h, target_size / w)
# 将坐标从缩放后的图像空间转换回原始图像空间
boxes /= scale
# 裁剪到原始图像边界内
h, w = origin_shape
boxes[:, 0] = np.clip(boxes[:, 0], 0, w) # x1
boxes[:, 1] = np.clip(boxes[:, 1], 0, h) # y1
boxes[:, 2] = np.clip(boxes[:, 2], 0, w) # x2
boxes[:, 3] = np.clip(boxes[:, 3], 0, h) # y2
return boxes
def filter_results(self, boxes: np.ndarray, scores: np.ndarray, labels: np.ndarray, iou_threshold: float, score_threshold: float) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Filter the boxes based on the iou_threshold and score_threshold.
"""
mask_score = scores >= score_threshold
# 1. 过滤掉 score 小于 score_threshold 的 boxes
target_boxes = boxes[mask_score]
target_scores = scores[mask_score]
target_labels = labels[mask_score]
# 2. 过滤掉 iou 小于 iou_threshold 的 boxes
mask_iou = self.nms(target_boxes, target_scores, iou_threshold)
target_boxes = target_boxes[mask_iou]
target_scores = target_scores[mask_iou]
target_labels = target_labels[mask_iou]
return target_boxes, target_scores, target_labels
def nms(self, boxes: np.ndarray, scores: np.ndarray, iou_threshold: float) -> np.ndarray:
"""
Non-maximum suppression.
当 iou 大于 iou_threshold 时,保留 score 最大的 box
"""
if len(boxes) == 0:
return np.array([], dtype=np.int32)
# 获取坐标
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
# 计算面积
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
# 按分数排序,从高到低
order = np.argsort(scores)[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
# 计算当前框与其他框的交集
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
# 计算交集面积
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
# 计算IoU
iou = inter / (areas[i] + areas[order[1:]] - inter)
# 保留IoU小于阈值的框
inds = np.where(iou <= iou_threshold)[0]
order = order[inds + 1]
return np.array(keep, dtype=np.int32)
def run_inference(self, image: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Run inference on the image.
Args:
image (np.ndarray): The image to run inference on.
Returns:
boxes: (N, 4) x1, y1, x2, y2
scores: (N,)
labels: (N,)
"""
# 运行推理
ort_outs = self.session.run(None, {self.input_name: image})
boxes_scores, labels = ort_outs[0], ort_outs[1] # RTMDet outputs cls_scores and bbox_preds
boxes = boxes_scores[0, :, :4]
scores = boxes_scores[0, :, 4]
labels = labels[0]
return boxes, scores, labels
def pred(self, image: Union[cv2.UMat, str], to_rgb: bool = False) -> Tuple[np.ndarray, np.ndarray, List[str]]:
"""
Predict the detection results of the image.
Args:
image (cv2.UMat, str): The image to predict.
Returns:
"""
if isinstance(image, str):
img = cv2.imread(image)
else:
img = image.copy()
image, scale, ori_shape = self.preprocess_image(img, to_rgb)
boxes, scores, labels = self.run_inference(image)
# 过滤结果
filtered_boxes, filtered_scores, filtered_labels = self.filter_results(boxes, scores, labels, self.iou_threshold, self.score_threshold)
# to origin bbox
origin_boxes = self.post_bbox(filtered_boxes, ori_shape, scale)
# label_names
label_names = [self.labels[label] for label in filtered_labels]
return origin_boxes, filtered_scores, label_names
def draw_pred(self, image: cv2.UMat, boxes: np.ndarray, scores: np.ndarray, labels: List[str]) -> cv2.UMat:
# 不同label 对应不同颜色,一共
colors = self.label_colors
# 在图像上绘制预测 bboxes 和 labels
# boxes = boxes.tolist()
# scores = scores.tolist()
for box, score, label in zip(boxes, scores, labels):
x1, y1, x2, y2 = box
x1 = int(x1)
y1 = int(y1)
x2 = int(x2)
y2 = int(y2)
label_index = self.labels.index(label)
cv2.rectangle(image, (x1, y1), (x2, y2), colors[label_index], 2)
cv2.putText(image, f"{label} {score:.2f}", (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, colors[label_index], 2)
return image
|