Spaces:
Sleeping
Sleeping
code
Browse files- .gitignore +3 -0
- app.py +85 -0
- core/poker_detector.py +42 -0
- core/runonnx/base_onnx.py +88 -0
- core/runonnx/common_detection.py +244 -0
- requirements.txt +2 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
coverage/
|
3 |
+
.DS_Store
|
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
# import cv2
|
3 |
+
import os
|
4 |
+
import base64
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from core.poker_detector import PokerDetector
|
8 |
+
|
9 |
+
detector = PokerDetector(
|
10 |
+
model_path="onnx/poker_detection_v4_rank.onnx"
|
11 |
+
)
|
12 |
+
|
13 |
+
|
14 |
+
### 构建 examples
|
15 |
+
|
16 |
+
def build_examples():
|
17 |
+
examples = []
|
18 |
+
# 读取 examples 目录下的所有图片
|
19 |
+
for file in os.listdir("examples"):
|
20 |
+
if file.endswith(".jpg") or file.endswith(".png"):
|
21 |
+
image_path = os.path.join("examples", file)
|
22 |
+
examples.append([image_path])
|
23 |
+
|
24 |
+
return examples
|
25 |
+
|
26 |
+
|
27 |
+
full_examples = build_examples()
|
28 |
+
|
29 |
+
|
30 |
+
with gr.Blocks(css="""
|
31 |
+
.image img {
|
32 |
+
max-height: 512px;
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
) as demo:
|
36 |
+
gr.Markdown("""
|
37 |
+
## 扑克牌检测
|
38 |
+
"""
|
39 |
+
)
|
40 |
+
with gr.Row():
|
41 |
+
with gr.Column():
|
42 |
+
image_input = gr.Image(label="上传扑克牌图片", type="numpy", elem_classes="image")
|
43 |
+
|
44 |
+
with gr.Column():
|
45 |
+
with gr.Column():
|
46 |
+
result_image = gr.Image(
|
47 |
+
label="检测结果",
|
48 |
+
interactive=False,
|
49 |
+
visible=True,
|
50 |
+
elem_classes="image"
|
51 |
+
)
|
52 |
+
|
53 |
+
with gr.Column():
|
54 |
+
use_time = gr.Textbox(
|
55 |
+
label="用时",
|
56 |
+
interactive=False,
|
57 |
+
visible=True,
|
58 |
+
)
|
59 |
+
|
60 |
+
with gr.Row():
|
61 |
+
with gr.Column():
|
62 |
+
gr.Examples(
|
63 |
+
full_examples[:10], inputs=[image_input], label="示例图片", examples_per_page=10,)
|
64 |
+
|
65 |
+
|
66 |
+
def detect_poker(image):
|
67 |
+
if image is None:
|
68 |
+
return None, ""
|
69 |
+
|
70 |
+
try:
|
71 |
+
image_rgb_with_pred, time_info = detector.pred_and_draw(image)
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
gr.Warning(f"检测失败: {e}")
|
75 |
+
return None, "检测失败"
|
76 |
+
|
77 |
+
|
78 |
+
return image_rgb_with_pred, time_info
|
79 |
+
|
80 |
+
image_input.change(fn=detect_poker,
|
81 |
+
inputs=[image_input],
|
82 |
+
outputs=[result_image, use_time])
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
demo.launch()
|
core/poker_detector.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import time
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from typing import List, Tuple, Union
|
6 |
+
from .runonnx.common_detection import COMMON_DETECTION_ONNX
|
7 |
+
|
8 |
+
class PokerDetector:
|
9 |
+
def __init__(self,
|
10 |
+
model_path: str,
|
11 |
+
):
|
12 |
+
|
13 |
+
self.poker_detection = COMMON_DETECTION_ONNX(
|
14 |
+
model_path=model_path,
|
15 |
+
labels=['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K', 'R', 'B'],
|
16 |
+
)
|
17 |
+
|
18 |
+
# 检测棋盘 detect board
|
19 |
+
def pred_and_draw(self, image_rgb: Union[np.ndarray, None] = None) -> Tuple[Union[np.ndarray, None], str]:
|
20 |
+
|
21 |
+
if image_rgb is None:
|
22 |
+
return None, ""
|
23 |
+
|
24 |
+
start_time = time.time()
|
25 |
+
|
26 |
+
try:
|
27 |
+
image_bgr = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR)
|
28 |
+
origin_boxes, filtered_scores, label_names = self.poker_detection.pred(image=image_bgr)
|
29 |
+
|
30 |
+
# draw
|
31 |
+
image_rgb_with_pred = self.poker_detection.draw_pred(image_rgb, boxes=origin_boxes, scores=filtered_scores, labels=label_names)
|
32 |
+
|
33 |
+
except Exception as e:
|
34 |
+
print("检测失败2", e)
|
35 |
+
return None, "检测失败2"
|
36 |
+
|
37 |
+
use_time = time.time() - start_time
|
38 |
+
|
39 |
+
time_info = f"推理用时: {use_time:.2f}s"
|
40 |
+
|
41 |
+
return image_rgb_with_pred, time_info
|
42 |
+
|
core/runonnx/base_onnx.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import onnxruntime
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
from abc import ABC, abstractmethod
|
5 |
+
from typing import Any, Tuple, Union, List
|
6 |
+
|
7 |
+
class BaseONNX(ABC):
|
8 |
+
def __init__(self, model_path: str, input_size: Tuple[int, int]):
|
9 |
+
"""初始化ONNX模型基类
|
10 |
+
|
11 |
+
Args:
|
12 |
+
model_path (str): ONNX模型路径
|
13 |
+
input_size (tuple): 模型输入尺寸 (width, height)
|
14 |
+
"""
|
15 |
+
self.session = onnxruntime.InferenceSession(model_path)
|
16 |
+
self.input_name = self.session.get_inputs()[0].name
|
17 |
+
self.input_size = input_size
|
18 |
+
|
19 |
+
def load_image(self, image: Union[cv2.UMat, str]) -> cv2.UMat:
|
20 |
+
"""加载图像
|
21 |
+
|
22 |
+
Args:
|
23 |
+
image (Union[cv2.UMat, str]): 图像路径或cv2图像对象
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
cv2.UMat: 加载的图像
|
27 |
+
"""
|
28 |
+
if isinstance(image, str):
|
29 |
+
return cv2.imread(image)
|
30 |
+
return image.copy()
|
31 |
+
|
32 |
+
@abstractmethod
|
33 |
+
def preprocess_image(self, img_bgr: cv2.UMat, *args, **kwargs) -> np.ndarray:
|
34 |
+
"""图像预处理抽象方法
|
35 |
+
|
36 |
+
Args:
|
37 |
+
img_bgr (cv2.UMat): BGR格式的输入图像
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
np.ndarray: 预处理后的图像
|
41 |
+
"""
|
42 |
+
pass
|
43 |
+
|
44 |
+
@abstractmethod
|
45 |
+
def run_inference(self, image: np.ndarray) -> Any:
|
46 |
+
"""运行推理的抽象方法
|
47 |
+
|
48 |
+
Args:
|
49 |
+
image (np.ndarray): 预处理后的输入图像
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
Any: 模型输出结果
|
53 |
+
"""
|
54 |
+
pass
|
55 |
+
|
56 |
+
@abstractmethod
|
57 |
+
def pred(self, image: Union[cv2.UMat, str], *args, **kwargs) -> Any:
|
58 |
+
"""预测的抽象方法
|
59 |
+
|
60 |
+
Args:
|
61 |
+
image (Union[cv2.UMat, str]): 输入图像或图像路径
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
Any: 预测结果
|
65 |
+
"""
|
66 |
+
pass
|
67 |
+
|
68 |
+
@abstractmethod
|
69 |
+
def draw_pred(self, img: cv2.UMat, *args, **kwargs) -> cv2.UMat:
|
70 |
+
"""绘制预测结果的抽象方法
|
71 |
+
|
72 |
+
Args:
|
73 |
+
img (cv2.UMat): 要绘制的图像
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
cv2.UMat: 绘制结果后的图像
|
77 |
+
"""
|
78 |
+
pass
|
79 |
+
|
80 |
+
|
81 |
+
def check_images_list(self, images: List[Union[cv2.UMat, str, np.ndarray]]):
|
82 |
+
"""
|
83 |
+
检查图像列表是否有效
|
84 |
+
"""
|
85 |
+
for image in images:
|
86 |
+
if not isinstance(image, cv2.UMat) and not isinstance(image, str) and not isinstance(image, np.ndarray):
|
87 |
+
raise ValueError("The images must be a list of cv2.UMat or str or np.ndarray.")
|
88 |
+
|
core/runonnx/common_detection.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import onnxruntime
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
|
5 |
+
from typing import Tuple, List, Union
|
6 |
+
from .base_onnx import BaseONNX
|
7 |
+
|
8 |
+
class COMMON_DETECTION_ONNX(BaseONNX):
|
9 |
+
|
10 |
+
def __init__(self,
|
11 |
+
model_path,
|
12 |
+
labels: List[str],
|
13 |
+
# 输入图片大小
|
14 |
+
input_size=(640, 640), # (w, h)
|
15 |
+
iou_threshold: float = 0.5,
|
16 |
+
score_threshold: float = 0.2,
|
17 |
+
):
|
18 |
+
super().__init__(model_path, input_size)
|
19 |
+
|
20 |
+
self.labels = labels
|
21 |
+
self.label_colors = []
|
22 |
+
for i in range(len(labels)):
|
23 |
+
self.label_colors.append((np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255)))
|
24 |
+
|
25 |
+
self.iou_threshold = iou_threshold
|
26 |
+
self.score_threshold = score_threshold
|
27 |
+
|
28 |
+
def preprocess_image(self, image: cv2.UMat, to_rgb: bool = True) -> Tuple[np.ndarray, float, Tuple[int, int]]:
|
29 |
+
|
30 |
+
if to_rgb:
|
31 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
32 |
+
|
33 |
+
target_size = self.input_size
|
34 |
+
ori_shape = image.shape[:2]
|
35 |
+
|
36 |
+
# 1. Resize with keep_ratio=True
|
37 |
+
h, w = image.shape[:2]
|
38 |
+
scale = min(target_size[0] / h, target_size[1] / w)
|
39 |
+
new_h, new_w = int(h * scale), int(w * scale)
|
40 |
+
resized = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
|
41 |
+
|
42 |
+
# 2. Pad to 640x640
|
43 |
+
pad_h = target_size[0] - new_h
|
44 |
+
pad_w = target_size[1] - new_w
|
45 |
+
top, bottom = 0, pad_h
|
46 |
+
left, right = 0, pad_w
|
47 |
+
|
48 |
+
padded = cv2.copyMakeBorder(
|
49 |
+
resized, top, bottom, left, right,
|
50 |
+
cv2.BORDER_CONSTANT, value=(114, 114, 114)
|
51 |
+
)
|
52 |
+
|
53 |
+
# img = img.astype(np.float32)
|
54 |
+
|
55 |
+
# 3. Normalize (BGR format, matching mmdet pipeline)
|
56 |
+
mean = np.array([103.53, 116.28, 123.675], dtype=np.float32)
|
57 |
+
std = np.array([57.375, 57.12, 58.395], dtype=np.float32)
|
58 |
+
|
59 |
+
normalized = (padded.astype(np.float32) - mean) / std
|
60 |
+
|
61 |
+
# 4. Convert to (C, H, W) and add batch dimension
|
62 |
+
input_tensor = normalized.transpose(2, 0, 1)[np.newaxis, ...]
|
63 |
+
|
64 |
+
return input_tensor, scale, ori_shape
|
65 |
+
|
66 |
+
def post_bbox(self, boxes, origin_shape, scale):
|
67 |
+
"""
|
68 |
+
将onnx的输出结果转换为mmdet的输出结果, 与 preprocess_image 中 的预处理相反
|
69 |
+
boxes: (N, 4) x1, y1, x2, y2
|
70 |
+
origin_shape: (H, W)
|
71 |
+
scale: 缩放因子,从 preprocess_image 获取
|
72 |
+
return: (N, 4) x1, y1, x2, y2
|
73 |
+
"""
|
74 |
+
if boxes is None or len(boxes) == 0:
|
75 |
+
return boxes
|
76 |
+
|
77 |
+
boxes = boxes.copy()
|
78 |
+
|
79 |
+
# 如果没有提供scale,假设是640x640输入,根据origin_shape计算scale
|
80 |
+
if scale is None:
|
81 |
+
target_size = 640
|
82 |
+
h, w = origin_shape
|
83 |
+
scale = min(target_size / h, target_size / w)
|
84 |
+
|
85 |
+
# 将坐标从缩放后的图像空间转换回原始图像空间
|
86 |
+
boxes /= scale
|
87 |
+
|
88 |
+
# 裁剪到原始图像边界内
|
89 |
+
h, w = origin_shape
|
90 |
+
boxes[:, 0] = np.clip(boxes[:, 0], 0, w) # x1
|
91 |
+
boxes[:, 1] = np.clip(boxes[:, 1], 0, h) # y1
|
92 |
+
boxes[:, 2] = np.clip(boxes[:, 2], 0, w) # x2
|
93 |
+
boxes[:, 3] = np.clip(boxes[:, 3], 0, h) # y2
|
94 |
+
|
95 |
+
return boxes
|
96 |
+
|
97 |
+
|
98 |
+
def filter_results(self, boxes: np.ndarray, scores: np.ndarray, labels: np.ndarray, iou_threshold: float, score_threshold: float) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
99 |
+
"""
|
100 |
+
Filter the boxes based on the iou_threshold and score_threshold.
|
101 |
+
"""
|
102 |
+
mask_score = scores >= score_threshold
|
103 |
+
|
104 |
+
|
105 |
+
# 1. 过滤掉 score 小于 score_threshold 的 boxes
|
106 |
+
target_boxes = boxes[mask_score]
|
107 |
+
target_scores = scores[mask_score]
|
108 |
+
target_labels = labels[mask_score]
|
109 |
+
|
110 |
+
# 2. 过滤掉 iou 小于 iou_threshold 的 boxes
|
111 |
+
mask_iou = self.nms(target_boxes, target_scores, iou_threshold)
|
112 |
+
|
113 |
+
target_boxes = target_boxes[mask_iou]
|
114 |
+
target_scores = target_scores[mask_iou]
|
115 |
+
target_labels = target_labels[mask_iou]
|
116 |
+
|
117 |
+
return target_boxes, target_scores, target_labels
|
118 |
+
|
119 |
+
def nms(self, boxes: np.ndarray, scores: np.ndarray, iou_threshold: float) -> np.ndarray:
|
120 |
+
"""
|
121 |
+
Non-maximum suppression.
|
122 |
+
当 iou 大于 iou_threshold 时,保留 score 最大的 box
|
123 |
+
|
124 |
+
"""
|
125 |
+
if len(boxes) == 0:
|
126 |
+
return np.array([], dtype=np.int32)
|
127 |
+
|
128 |
+
# 获取坐标
|
129 |
+
x1 = boxes[:, 0]
|
130 |
+
y1 = boxes[:, 1]
|
131 |
+
x2 = boxes[:, 2]
|
132 |
+
y2 = boxes[:, 3]
|
133 |
+
|
134 |
+
# 计算面积
|
135 |
+
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
136 |
+
|
137 |
+
# 按分数排序,从高到低
|
138 |
+
order = np.argsort(scores)[::-1]
|
139 |
+
|
140 |
+
keep = []
|
141 |
+
while order.size > 0:
|
142 |
+
i = order[0]
|
143 |
+
keep.append(i)
|
144 |
+
|
145 |
+
# 计算当前框与其他框的交集
|
146 |
+
xx1 = np.maximum(x1[i], x1[order[1:]])
|
147 |
+
yy1 = np.maximum(y1[i], y1[order[1:]])
|
148 |
+
xx2 = np.minimum(x2[i], x2[order[1:]])
|
149 |
+
yy2 = np.minimum(y2[i], y2[order[1:]])
|
150 |
+
|
151 |
+
# 计算交集面积
|
152 |
+
w = np.maximum(0.0, xx2 - xx1 + 1)
|
153 |
+
h = np.maximum(0.0, yy2 - yy1 + 1)
|
154 |
+
inter = w * h
|
155 |
+
|
156 |
+
# 计算IoU
|
157 |
+
iou = inter / (areas[i] + areas[order[1:]] - inter)
|
158 |
+
|
159 |
+
# 保留IoU小于阈值的框
|
160 |
+
inds = np.where(iou <= iou_threshold)[0]
|
161 |
+
order = order[inds + 1]
|
162 |
+
|
163 |
+
return np.array(keep, dtype=np.int32)
|
164 |
+
|
165 |
+
def run_inference(self, image: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
166 |
+
"""
|
167 |
+
Run inference on the image.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
image (np.ndarray): The image to run inference on.
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
boxes: (N, 4) x1, y1, x2, y2
|
174 |
+
scores: (N,)
|
175 |
+
labels: (N,)
|
176 |
+
"""
|
177 |
+
# 运行推理
|
178 |
+
ort_outs = self.session.run(None, {self.input_name: image})
|
179 |
+
|
180 |
+
boxes_scores, labels = ort_outs[0], ort_outs[1] # RTMDet outputs cls_scores and bbox_preds
|
181 |
+
boxes = boxes_scores[0, :, :4]
|
182 |
+
scores = boxes_scores[0, :, 4]
|
183 |
+
labels = labels[0]
|
184 |
+
|
185 |
+
return boxes, scores, labels
|
186 |
+
|
187 |
+
def pred(self, image: Union[cv2.UMat, str], to_rgb: bool = False) -> Tuple[np.ndarray, np.ndarray, List[str]]:
|
188 |
+
"""
|
189 |
+
Predict the detection results of the image.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
image (cv2.UMat, str): The image to predict.
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
|
196 |
+
"""
|
197 |
+
if isinstance(image, str):
|
198 |
+
img = cv2.imread(image)
|
199 |
+
else:
|
200 |
+
img = image.copy()
|
201 |
+
|
202 |
+
image, scale, ori_shape = self.preprocess_image(img, to_rgb)
|
203 |
+
|
204 |
+
boxes, scores, labels = self.run_inference(image)
|
205 |
+
|
206 |
+
|
207 |
+
# 过滤结果
|
208 |
+
filtered_boxes, filtered_scores, filtered_labels = self.filter_results(boxes, scores, labels, self.iou_threshold, self.score_threshold)
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
# to origin bbox
|
213 |
+
origin_boxes = self.post_bbox(filtered_boxes, ori_shape, scale)
|
214 |
+
|
215 |
+
# label_names
|
216 |
+
label_names = [self.labels[label] for label in filtered_labels]
|
217 |
+
|
218 |
+
|
219 |
+
return origin_boxes, filtered_scores, label_names
|
220 |
+
|
221 |
+
def draw_pred(self, image: cv2.UMat, boxes: np.ndarray, scores: np.ndarray, labels: List[str]) -> cv2.UMat:
|
222 |
+
|
223 |
+
# 不同label 对应不同颜色,一共
|
224 |
+
colors = self.label_colors
|
225 |
+
|
226 |
+
# 在图像上绘制预测 bboxes 和 labels
|
227 |
+
# boxes = boxes.tolist()
|
228 |
+
# scores = scores.tolist()
|
229 |
+
|
230 |
+
for box, score, label in zip(boxes, scores, labels):
|
231 |
+
x1, y1, x2, y2 = box
|
232 |
+
|
233 |
+
x1 = int(x1)
|
234 |
+
y1 = int(y1)
|
235 |
+
x2 = int(x2)
|
236 |
+
y2 = int(y2)
|
237 |
+
label_index = self.labels.index(label)
|
238 |
+
|
239 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), colors[label_index], 2)
|
240 |
+
cv2.putText(image, f"{label} {score:.2f}", (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, colors[label_index], 2)
|
241 |
+
|
242 |
+
return image
|
243 |
+
|
244 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
onnxruntime
|