Spaces:
Paused
Paused
import os | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# ---------------------------------------------------------------------- | |
# Helper: read a secret with a safe fallback (useful when you run the | |
# script locally without a secrets file). | |
# ---------------------------------------------------------------------- | |
def _secret(key: str, fallback: str) -> str: | |
"""Return the value of a secret or the supplied fallback.""" | |
return os.getenv(key, fallback) | |
# ---------------------------------------------------------------------- | |
# Core chat logic – the system prompt now comes from the secret `prec_chat`. | |
# ---------------------------------------------------------------------- | |
def respond( | |
message: str, | |
history: list[dict[str, str]], | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
hf_token: gr.OAuthToken, | |
): | |
""" | |
Generate a response using the HuggingFace Inference API. | |
The system prompt is taken from the secret **prec_chat**. | |
Users cannot edit it from the UI. | |
""" | |
# 1️⃣ Load the system prompt (fallback = generic assistant) | |
system_message = _secret("prec_chat", "You are a helpful assistant.") | |
# 2️⃣ Initialise the HF inference client. | |
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b") | |
# 3️⃣ Build the message list for the chat completion endpoint. | |
messages = [{"role": "system", "content": system_message}] | |
messages.extend(history) # previous conversation | |
messages.append({"role": "user", "content": message}) # current query | |
# 4️⃣ Stream the response back to the UI. | |
response = "" | |
for chunk in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
choices = chunk.choices | |
token = "" | |
if choices and choices[0].delta.content: | |
token = choices[0].delta.content | |
response += token | |
yield response | |
# ---------------------------------------------------------------------- | |
# UI definition – the system‑prompt textbox has been removed. | |
# ---------------------------------------------------------------------- | |
chatbot = gr.ChatInterface( | |
respond, | |
type="messages", | |
additional_inputs=[ | |
# Only generation parameters are exposed now. | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top‑p (nucleus sampling)", | |
), | |
], | |
) | |
# ---------------------------------------------------------------------- | |
# Build the Blocks layout (no LoginButton – we use our own auth). | |
# ---------------------------------------------------------------------- | |
with gr.Blocks() as demo: | |
chatbot.render() | |
# ---------------------------------------------------------------------- | |
# Launch with **basic authentication**. | |
# ---------------------------------------------------------------------- | |
if __name__ == "__main__": | |
# Pull the allowed credentials from secrets (fallback = no access) | |
allowed_user = _secret("CHAT_USER", "") | |
allowed_pass = _secret("CHAT_PASS", "") | |
# If either is missing we refuse to start – this prevents an accidental | |
# open‑access deployment. | |
if not allowed_user or not allowed_pass: | |
raise RuntimeError( | |
"Authentication credentials not found in secrets. " | |
"Add CHAT_USER and CHAT_PASS to secrets.toml." | |
) | |
demo.launch( | |
auth=(allowed_user, allowed_pass), # <-- Gradio's built‑in basic auth | |
# optional: you can also set `auth_message="Please log in"` or | |
# `prevent_thread_lock=True` depending on your deployment. | |
) |