import os import gradio as gr from huggingface_hub import InferenceClient # ---------------------------------------------------------------------- # Helper: read a secret with a safe fallback (useful when you run the # script locally without a secrets file). # ---------------------------------------------------------------------- def _secret(key: str, fallback: str) -> str: """Return the value of a secret or the supplied fallback.""" return os.getenv(key, fallback) # ---------------------------------------------------------------------- # Core chat logic – the system prompt now comes from the secret `prec_chat`. # ---------------------------------------------------------------------- def respond( message: str, history: list[dict[str, str]], max_tokens: int, temperature: float, top_p: float, hf_token: gr.OAuthToken, ): """ Generate a response using the HuggingFace Inference API. The system prompt is taken from the secret **prec_chat**. Users cannot edit it from the UI. """ # 1️⃣ Load the system prompt (fallback = generic assistant) system_message = _secret("prec_chat", "You are a helpful assistant.") # 2️⃣ Initialise the HF inference client. client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b") # 3️⃣ Build the message list for the chat completion endpoint. messages = [{"role": "system", "content": system_message}] messages.extend(history) # previous conversation messages.append({"role": "user", "content": message}) # current query # 4️⃣ Stream the response back to the UI. response = "" for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): choices = chunk.choices token = "" if choices and choices[0].delta.content: token = choices[0].delta.content response += token yield response # ---------------------------------------------------------------------- # UI definition – the system‑prompt textbox has been removed. # ---------------------------------------------------------------------- chatbot = gr.ChatInterface( respond, type="messages", additional_inputs=[ # Only generation parameters are exposed now. gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top‑p (nucleus sampling)", ), ], ) # ---------------------------------------------------------------------- # Build the Blocks layout (no LoginButton – we use our own auth). # ---------------------------------------------------------------------- with gr.Blocks() as demo: chatbot.render() # ---------------------------------------------------------------------- # Launch with **basic authentication**. # ---------------------------------------------------------------------- if __name__ == "__main__": # Pull the allowed credentials from secrets (fallback = no access) allowed_user = _secret("CHAT_USER", "") allowed_pass = _secret("CHAT_PASS", "") # If either is missing we refuse to start – this prevents an accidental # open‑access deployment. if not allowed_user or not allowed_pass: raise RuntimeError( "Authentication credentials not found in secrets. " "Add CHAT_USER and CHAT_PASS to secrets.toml." ) demo.launch( auth=(allowed_user, allowed_pass), # <-- Gradio's built‑in basic auth # optional: you can also set `auth_message="Please log in"` or # `prevent_thread_lock=True` depending on your deployment. )