sdxl_refiner / app.py
yingzhac's picture
Update app to use SDXL Refiner for image-to-image generation
f0c0f38
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import StableDiffusionXLImg2ImgPipeline
from diffusers.utils import load_image
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
model_repo_id,
torch_dtype=torch_dtype,
variant="fp16" if torch.cuda.is_available() else None,
use_safetensors=True
)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(
prompt,
input_image,
negative_prompt,
seed,
randomize_seed,
strength,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
return None, seed
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Process the image
if input_image is not None:
width, height = input_image.size
# Ensure width and height are valid for the model
if width > MAX_IMAGE_SIZE:
width = MAX_IMAGE_SIZE
if height > MAX_IMAGE_SIZE:
height = MAX_IMAGE_SIZE
image = pipe(
prompt=prompt,
image=input_image,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
strength=strength,
generator=generator,
).images[0]
return image, seed
examples = [
["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
["An astronaut riding a green horse", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
["A delicious ceviche cheesecake slice", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 840px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # SDXL Refiner - Image-to-Image")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Input Image",
type="pil",
height=400
)
with gr.Column(scale=1):
result = gr.Image(label="Result", height=400)
prompt = gr.Text(
label="Prompt",
placeholder="Enter your prompt",
)
run_button = gr.Button("Run", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.7,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=20.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=30,
)
gr.Examples(
examples=examples,
inputs=[prompt, input_image],
outputs=[result, seed],
fn=infer,
cache_examples=True,
)
gr.on(
triggers=[run_button.click],
fn=infer,
inputs=[
prompt,
input_image,
negative_prompt,
seed,
randomize_seed,
strength,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()