Spaces:
Running
on
Zero
Running
on
Zero
Update app to use SDXL Refiner for image-to-image generation
Browse files
app.py
CHANGED
@@ -2,49 +2,67 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
|
5 |
-
import spaces
|
6 |
-
from diffusers import
|
|
|
7 |
import torch
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/
|
11 |
|
12 |
if torch.cuda.is_available():
|
13 |
torch_dtype = torch.float16
|
14 |
else:
|
15 |
torch_dtype = torch.float32
|
16 |
|
17 |
-
pipe =
|
|
|
|
|
|
|
|
|
|
|
18 |
pipe = pipe.to(device)
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
-
|
24 |
-
@spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
prompt,
|
|
|
27 |
negative_prompt,
|
28 |
seed,
|
29 |
randomize_seed,
|
30 |
-
|
31 |
-
height,
|
32 |
guidance_scale,
|
33 |
num_inference_steps,
|
34 |
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
|
|
|
|
|
|
36 |
if randomize_seed:
|
37 |
seed = random.randint(0, MAX_SEED)
|
38 |
|
39 |
generator = torch.Generator().manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
image = pipe(
|
42 |
prompt=prompt,
|
|
|
43 |
negative_prompt=negative_prompt,
|
44 |
guidance_scale=guidance_scale,
|
45 |
num_inference_steps=num_inference_steps,
|
46 |
-
|
47 |
-
height=height,
|
48 |
generator=generator,
|
49 |
).images[0]
|
50 |
|
@@ -52,41 +70,52 @@ def infer(
|
|
52 |
|
53 |
|
54 |
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
]
|
59 |
|
60 |
css = """
|
61 |
#col-container {
|
62 |
margin: 0 auto;
|
63 |
-
max-width:
|
64 |
}
|
65 |
"""
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" #
|
70 |
|
71 |
with gr.Row():
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
)
|
79 |
-
|
80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
with gr.Accordion("Advanced Settings", open=False):
|
85 |
negative_prompt = gr.Text(
|
86 |
label="Negative prompt",
|
87 |
max_lines=1,
|
88 |
placeholder="Enter a negative prompt",
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
)
|
91 |
|
92 |
seed = gr.Slider(
|
@@ -99,51 +128,41 @@ with gr.Blocks(css=css) as demo:
|
|
99 |
|
100 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
|
102 |
-
with gr.Row():
|
103 |
-
width = gr.Slider(
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
-
)
|
110 |
-
|
111 |
-
height = gr.Slider(
|
112 |
-
label="Height",
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
-
|
119 |
with gr.Row():
|
120 |
guidance_scale = gr.Slider(
|
121 |
label="Guidance scale",
|
122 |
-
minimum=
|
123 |
-
maximum=
|
124 |
step=0.1,
|
125 |
-
value=
|
126 |
)
|
127 |
|
128 |
num_inference_steps = gr.Slider(
|
129 |
label="Number of inference steps",
|
130 |
minimum=1,
|
131 |
-
maximum=
|
132 |
step=1,
|
133 |
-
value=
|
134 |
)
|
135 |
|
136 |
-
gr.Examples(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
gr.on(
|
138 |
-
triggers=[run_button.click
|
139 |
fn=infer,
|
140 |
inputs=[
|
141 |
prompt,
|
|
|
142 |
negative_prompt,
|
143 |
seed,
|
144 |
randomize_seed,
|
145 |
-
|
146 |
-
height,
|
147 |
guidance_scale,
|
148 |
num_inference_steps,
|
149 |
],
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
|
5 |
+
import spaces
|
6 |
+
from diffusers import StableDiffusionXLImg2ImgPipeline
|
7 |
+
from diffusers.utils import load_image
|
8 |
import torch
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
model_repo_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
|
12 |
|
13 |
if torch.cuda.is_available():
|
14 |
torch_dtype = torch.float16
|
15 |
else:
|
16 |
torch_dtype = torch.float32
|
17 |
|
18 |
+
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
19 |
+
model_repo_id,
|
20 |
+
torch_dtype=torch_dtype,
|
21 |
+
variant="fp16" if torch.cuda.is_available() else None,
|
22 |
+
use_safetensors=True
|
23 |
+
)
|
24 |
pipe = pipe.to(device)
|
25 |
|
26 |
MAX_SEED = np.iinfo(np.int32).max
|
27 |
MAX_IMAGE_SIZE = 1024
|
28 |
|
29 |
+
@spaces.GPU
|
|
|
30 |
def infer(
|
31 |
prompt,
|
32 |
+
input_image,
|
33 |
negative_prompt,
|
34 |
seed,
|
35 |
randomize_seed,
|
36 |
+
strength,
|
|
|
37 |
guidance_scale,
|
38 |
num_inference_steps,
|
39 |
progress=gr.Progress(track_tqdm=True),
|
40 |
):
|
41 |
+
if input_image is None:
|
42 |
+
return None, seed
|
43 |
+
|
44 |
if randomize_seed:
|
45 |
seed = random.randint(0, MAX_SEED)
|
46 |
|
47 |
generator = torch.Generator().manual_seed(seed)
|
48 |
+
|
49 |
+
# Process the image
|
50 |
+
if input_image is not None:
|
51 |
+
width, height = input_image.size
|
52 |
+
|
53 |
+
# Ensure width and height are valid for the model
|
54 |
+
if width > MAX_IMAGE_SIZE:
|
55 |
+
width = MAX_IMAGE_SIZE
|
56 |
+
if height > MAX_IMAGE_SIZE:
|
57 |
+
height = MAX_IMAGE_SIZE
|
58 |
|
59 |
image = pipe(
|
60 |
prompt=prompt,
|
61 |
+
image=input_image,
|
62 |
negative_prompt=negative_prompt,
|
63 |
guidance_scale=guidance_scale,
|
64 |
num_inference_steps=num_inference_steps,
|
65 |
+
strength=strength,
|
|
|
66 |
generator=generator,
|
67 |
).images[0]
|
68 |
|
|
|
70 |
|
71 |
|
72 |
examples = [
|
73 |
+
["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
|
74 |
+
["An astronaut riding a green horse", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
|
75 |
+
["A delicious ceviche cheesecake slice", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
|
76 |
]
|
77 |
|
78 |
css = """
|
79 |
#col-container {
|
80 |
margin: 0 auto;
|
81 |
+
max-width: 840px;
|
82 |
}
|
83 |
"""
|
84 |
|
85 |
with gr.Blocks(css=css) as demo:
|
86 |
with gr.Column(elem_id="col-container"):
|
87 |
+
gr.Markdown(" # SDXL Refiner - Image-to-Image")
|
88 |
|
89 |
with gr.Row():
|
90 |
+
with gr.Column(scale=1):
|
91 |
+
input_image = gr.Image(
|
92 |
+
label="Input Image",
|
93 |
+
type="pil",
|
94 |
+
height=400
|
95 |
+
)
|
96 |
+
with gr.Column(scale=1):
|
97 |
+
result = gr.Image(label="Result", height=400)
|
|
|
98 |
|
99 |
+
prompt = gr.Text(
|
100 |
+
label="Prompt",
|
101 |
+
placeholder="Enter your prompt",
|
102 |
+
)
|
103 |
+
|
104 |
+
run_button = gr.Button("Run", variant="primary")
|
105 |
|
106 |
with gr.Accordion("Advanced Settings", open=False):
|
107 |
negative_prompt = gr.Text(
|
108 |
label="Negative prompt",
|
109 |
max_lines=1,
|
110 |
placeholder="Enter a negative prompt",
|
111 |
+
)
|
112 |
+
|
113 |
+
strength = gr.Slider(
|
114 |
+
label="Strength",
|
115 |
+
minimum=0.0,
|
116 |
+
maximum=1.0,
|
117 |
+
step=0.05,
|
118 |
+
value=0.7,
|
119 |
)
|
120 |
|
121 |
seed = gr.Slider(
|
|
|
128 |
|
129 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
with gr.Row():
|
132 |
guidance_scale = gr.Slider(
|
133 |
label="Guidance scale",
|
134 |
+
minimum=1.0,
|
135 |
+
maximum=20.0,
|
136 |
step=0.1,
|
137 |
+
value=7.5,
|
138 |
)
|
139 |
|
140 |
num_inference_steps = gr.Slider(
|
141 |
label="Number of inference steps",
|
142 |
minimum=1,
|
143 |
+
maximum=100,
|
144 |
step=1,
|
145 |
+
value=30,
|
146 |
)
|
147 |
|
148 |
+
gr.Examples(
|
149 |
+
examples=examples,
|
150 |
+
inputs=[prompt, input_image],
|
151 |
+
outputs=[result, seed],
|
152 |
+
fn=infer,
|
153 |
+
cache_examples=True,
|
154 |
+
)
|
155 |
+
|
156 |
gr.on(
|
157 |
+
triggers=[run_button.click],
|
158 |
fn=infer,
|
159 |
inputs=[
|
160 |
prompt,
|
161 |
+
input_image,
|
162 |
negative_prompt,
|
163 |
seed,
|
164 |
randomize_seed,
|
165 |
+
strength,
|
|
|
166 |
guidance_scale,
|
167 |
num_inference_steps,
|
168 |
],
|