yingzhac commited on
Commit
f0c0f38
·
1 Parent(s): a1ba9c0

Update app to use SDXL Refiner for image-to-image generation

Browse files
Files changed (1) hide show
  1. app.py +71 -52
app.py CHANGED
@@ -2,49 +2,67 @@ import gradio as gr
2
  import numpy as np
3
  import random
4
 
5
- import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
 
7
  import torch
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
  if torch.cuda.is_available():
13
  torch_dtype = torch.float16
14
  else:
15
  torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
 
 
 
 
 
18
  pipe = pipe.to(device)
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
23
-
24
- @spaces.GPU #[uncomment to use ZeroGPU]
25
  def infer(
26
  prompt,
 
27
  negative_prompt,
28
  seed,
29
  randomize_seed,
30
- width,
31
- height,
32
  guidance_scale,
33
  num_inference_steps,
34
  progress=gr.Progress(track_tqdm=True),
35
  ):
 
 
 
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
 
39
  generator = torch.Generator().manual_seed(seed)
 
 
 
 
 
 
 
 
 
 
40
 
41
  image = pipe(
42
  prompt=prompt,
 
43
  negative_prompt=negative_prompt,
44
  guidance_scale=guidance_scale,
45
  num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
  generator=generator,
49
  ).images[0]
50
 
@@ -52,41 +70,52 @@ def infer(
52
 
53
 
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
  css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
 
71
  with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
 
82
- result = gr.Image(label="Result", show_label=False)
 
 
 
 
 
83
 
84
  with gr.Accordion("Advanced Settings", open=False):
85
  negative_prompt = gr.Text(
86
  label="Negative prompt",
87
  max_lines=1,
88
  placeholder="Enter a negative prompt",
89
- visible=False,
 
 
 
 
 
 
 
90
  )
91
 
92
  seed = gr.Slider(
@@ -99,51 +128,41 @@ with gr.Blocks(css=css) as demo:
99
 
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
 
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
  with gr.Row():
120
  guidance_scale = gr.Slider(
121
  label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
 
128
  num_inference_steps = gr.Slider(
129
  label="Number of inference steps",
130
  minimum=1,
131
- maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
 
 
 
 
 
 
 
137
  gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
  fn=infer,
140
  inputs=[
141
  prompt,
 
142
  negative_prompt,
143
  seed,
144
  randomize_seed,
145
- width,
146
- height,
147
  guidance_scale,
148
  num_inference_steps,
149
  ],
 
2
  import numpy as np
3
  import random
4
 
5
+ import spaces
6
+ from diffusers import StableDiffusionXLImg2ImgPipeline
7
+ from diffusers.utils import load_image
8
  import torch
9
 
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
+ model_repo_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
12
 
13
  if torch.cuda.is_available():
14
  torch_dtype = torch.float16
15
  else:
16
  torch_dtype = torch.float32
17
 
18
+ pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
19
+ model_repo_id,
20
+ torch_dtype=torch_dtype,
21
+ variant="fp16" if torch.cuda.is_available() else None,
22
+ use_safetensors=True
23
+ )
24
  pipe = pipe.to(device)
25
 
26
  MAX_SEED = np.iinfo(np.int32).max
27
  MAX_IMAGE_SIZE = 1024
28
 
29
+ @spaces.GPU
 
30
  def infer(
31
  prompt,
32
+ input_image,
33
  negative_prompt,
34
  seed,
35
  randomize_seed,
36
+ strength,
 
37
  guidance_scale,
38
  num_inference_steps,
39
  progress=gr.Progress(track_tqdm=True),
40
  ):
41
+ if input_image is None:
42
+ return None, seed
43
+
44
  if randomize_seed:
45
  seed = random.randint(0, MAX_SEED)
46
 
47
  generator = torch.Generator().manual_seed(seed)
48
+
49
+ # Process the image
50
+ if input_image is not None:
51
+ width, height = input_image.size
52
+
53
+ # Ensure width and height are valid for the model
54
+ if width > MAX_IMAGE_SIZE:
55
+ width = MAX_IMAGE_SIZE
56
+ if height > MAX_IMAGE_SIZE:
57
+ height = MAX_IMAGE_SIZE
58
 
59
  image = pipe(
60
  prompt=prompt,
61
+ image=input_image,
62
  negative_prompt=negative_prompt,
63
  guidance_scale=guidance_scale,
64
  num_inference_steps=num_inference_steps,
65
+ strength=strength,
 
66
  generator=generator,
67
  ).images[0]
68
 
 
70
 
71
 
72
  examples = [
73
+ ["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
74
+ ["An astronaut riding a green horse", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
75
+ ["A delicious ceviche cheesecake slice", "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"],
76
  ]
77
 
78
  css = """
79
  #col-container {
80
  margin: 0 auto;
81
+ max-width: 840px;
82
  }
83
  """
84
 
85
  with gr.Blocks(css=css) as demo:
86
  with gr.Column(elem_id="col-container"):
87
+ gr.Markdown(" # SDXL Refiner - Image-to-Image")
88
 
89
  with gr.Row():
90
+ with gr.Column(scale=1):
91
+ input_image = gr.Image(
92
+ label="Input Image",
93
+ type="pil",
94
+ height=400
95
+ )
96
+ with gr.Column(scale=1):
97
+ result = gr.Image(label="Result", height=400)
 
98
 
99
+ prompt = gr.Text(
100
+ label="Prompt",
101
+ placeholder="Enter your prompt",
102
+ )
103
+
104
+ run_button = gr.Button("Run", variant="primary")
105
 
106
  with gr.Accordion("Advanced Settings", open=False):
107
  negative_prompt = gr.Text(
108
  label="Negative prompt",
109
  max_lines=1,
110
  placeholder="Enter a negative prompt",
111
+ )
112
+
113
+ strength = gr.Slider(
114
+ label="Strength",
115
+ minimum=0.0,
116
+ maximum=1.0,
117
+ step=0.05,
118
+ value=0.7,
119
  )
120
 
121
  seed = gr.Slider(
 
128
 
129
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
  with gr.Row():
132
  guidance_scale = gr.Slider(
133
  label="Guidance scale",
134
+ minimum=1.0,
135
+ maximum=20.0,
136
  step=0.1,
137
+ value=7.5,
138
  )
139
 
140
  num_inference_steps = gr.Slider(
141
  label="Number of inference steps",
142
  minimum=1,
143
+ maximum=100,
144
  step=1,
145
+ value=30,
146
  )
147
 
148
+ gr.Examples(
149
+ examples=examples,
150
+ inputs=[prompt, input_image],
151
+ outputs=[result, seed],
152
+ fn=infer,
153
+ cache_examples=True,
154
+ )
155
+
156
  gr.on(
157
+ triggers=[run_button.click],
158
  fn=infer,
159
  inputs=[
160
  prompt,
161
+ input_image,
162
  negative_prompt,
163
  seed,
164
  randomize_seed,
165
+ strength,
 
166
  guidance_scale,
167
  num_inference_steps,
168
  ],