yingzhac's picture
Fix: 完全移除示例部分以解决图片加载错误
0791d57
import gradio as gr
import numpy as np
import random
import cv2
import spaces
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
sd_model_id = "runwayml/stable-diffusion-v1-5"
controlnet_model_id = "lllyasviel/sd-controlnet-canny"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# Load ControlNet model
controlnet = ControlNetModel.from_pretrained(
controlnet_model_id,
torch_dtype=torch_dtype
)
# Load Stable Diffusion with ControlNet
pipe = StableDiffusionControlNetPipeline.from_pretrained(
sd_model_id,
controlnet=controlnet,
torch_dtype=torch_dtype,
safety_checker=None
)
pipe = pipe.to(device)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def apply_canny(image, low_threshold, high_threshold):
"""Apply Canny edge detection to the image"""
# Convert PIL image to numpy array
image_np = np.array(image)
# Convert to grayscale if the image is colored
if len(image_np.shape) == 3 and image_np.shape[2] == 3:
image_gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
else:
image_gray = image_np
# Apply Canny edge detection
edges = cv2.Canny(image_gray, low_threshold, high_threshold)
# Convert back to RGB for the model
edges_rgb = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
# Convert back to PIL image
return Image.fromarray(edges_rgb)
@spaces.GPU
def infer(
prompt,
input_image,
negative_prompt,
seed,
randomize_seed,
canny_low_threshold,
canny_high_threshold,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
return None, seed
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Process the image
if input_image is not None:
width, height = input_image.size
# Ensure width and height are valid for the model
if width > MAX_IMAGE_SIZE:
width = MAX_IMAGE_SIZE
if height > MAX_IMAGE_SIZE:
height = MAX_IMAGE_SIZE
# Apply Canny edge detection
canny_image = apply_canny(input_image, canny_low_threshold, canny_high_threshold)
image = pipe(
prompt=prompt,
image=canny_image,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
return image, seed, canny_image
css = """
#col-container {
margin: 0 auto;
max-width: 840px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # ControlNet Canny - Edge Guided Image Generation")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Input Image",
type="pil",
height=400
)
with gr.Column(scale=1):
canny_image = gr.Image(
label="Canny Edge Detection",
height=400
)
with gr.Column(scale=1):
result = gr.Image(
label="Result",
height=400
)
prompt = gr.Text(
label="Prompt",
placeholder="Enter your prompt (e.g., 'a fantasy landscape with mountains')",
)
run_button = gr.Button("Run", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
canny_low_threshold = gr.Slider(
label="Canny Low Threshold",
minimum=1,
maximum=255,
step=1,
value=100,
)
canny_high_threshold = gr.Slider(
label="Canny High Threshold",
minimum=1,
maximum=255,
step=1,
value=200,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=20.0,
step=0.1,
value=7.5,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=30,
)
gr.on(
triggers=[run_button.click],
fn=infer,
inputs=[
prompt,
input_image,
negative_prompt,
seed,
randomize_seed,
canny_low_threshold,
canny_high_threshold,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed, canny_image],
)
if __name__ == "__main__":
demo.launch()