File size: 5,723 Bytes
693fb49
 
 
f2a632c
693fb49
f0c0f38
693fb49
f2a632c
eaa2696
f2a632c
693fb49
 
f2a632c
 
693fb49
 
 
 
 
 
f2a632c
 
 
 
 
 
 
 
 
 
f0c0f38
eaa2696
f0c0f38
693fb49
f2a632c
693fb49
 
 
 
f2a632c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0c0f38
693fb49
 
f0c0f38
693fb49
 
 
f2a632c
 
693fb49
 
 
 
f0c0f38
 
 
693fb49
 
 
 
f0c0f38
 
 
 
 
 
 
 
 
 
f2a632c
 
 
693fb49
 
 
f2a632c
693fb49
 
 
 
 
 
f2a632c
693fb49
 
 
 
f0c0f38
693fb49
 
 
 
 
f2a632c
693fb49
 
f0c0f38
 
 
 
 
 
 
f2a632c
 
 
 
 
 
 
 
 
693fb49
f0c0f38
f2a632c
 
f0c0f38
 
 
693fb49
 
 
 
 
 
f0c0f38
 
eaa2696
f2a632c
 
 
 
 
 
eaa2696
 
f2a632c
 
 
 
 
 
eaa2696
693fb49
f2a632c
 
 
 
 
 
 
 
693fb49
 
 
 
 
 
 
 
 
 
eaa2696
 
 
 
 
f2a632c
eaa2696
693fb49
 
f0c0f38
693fb49
 
 
f0c0f38
693fb49
 
 
f2a632c
 
693fb49
 
 
f2a632c
693fb49
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
import numpy as np
import random
import cv2

import spaces
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
sd_model_id = "runwayml/stable-diffusion-v1-5"
controlnet_model_id = "lllyasviel/sd-controlnet-canny"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

# Load ControlNet model
controlnet = ControlNetModel.from_pretrained(
    controlnet_model_id, 
    torch_dtype=torch_dtype
)

# Load Stable Diffusion with ControlNet
pipe = StableDiffusionControlNetPipeline.from_pretrained(
    sd_model_id, 
    controlnet=controlnet, 
    torch_dtype=torch_dtype, 
    safety_checker=None
)
pipe = pipe.to(device)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def apply_canny(image, low_threshold, high_threshold):
    """Apply Canny edge detection to the image"""
    # Convert PIL image to numpy array
    image_np = np.array(image)
    
    # Convert to grayscale if the image is colored
    if len(image_np.shape) == 3 and image_np.shape[2] == 3:
        image_gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
    else:
        image_gray = image_np
        
    # Apply Canny edge detection
    edges = cv2.Canny(image_gray, low_threshold, high_threshold)
    
    # Convert back to RGB for the model
    edges_rgb = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
    
    # Convert back to PIL image
    return Image.fromarray(edges_rgb)

@spaces.GPU
def infer(
    prompt,
    input_image,
    negative_prompt,
    seed,
    randomize_seed,
    canny_low_threshold,
    canny_high_threshold,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if input_image is None:
        return None, seed
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)
    
    # Process the image
    if input_image is not None:
        width, height = input_image.size
        
        # Ensure width and height are valid for the model
        if width > MAX_IMAGE_SIZE:
            width = MAX_IMAGE_SIZE
        if height > MAX_IMAGE_SIZE:
            height = MAX_IMAGE_SIZE
            
        # Apply Canny edge detection
        canny_image = apply_canny(input_image, canny_low_threshold, canny_high_threshold)

    image = pipe(
        prompt=prompt,
        image=canny_image,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
    ).images[0]

    return image, seed, canny_image

css = """
#col-container {
    margin: 0 auto;
    max-width: 840px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # ControlNet Canny - Edge Guided Image Generation")

        with gr.Row():
            with gr.Column(scale=1):
                input_image = gr.Image(
                    label="Input Image",
                    type="pil",
                    height=400
                )
            with gr.Column(scale=1):
                canny_image = gr.Image(
                    label="Canny Edge Detection",
                    height=400
                )
            with gr.Column(scale=1):
                result = gr.Image(
                    label="Result", 
                    height=400
                )

        prompt = gr.Text(
            label="Prompt",
            placeholder="Enter your prompt (e.g., 'a fantasy landscape with mountains')",
        )
        
        run_button = gr.Button("Run", variant="primary")

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )
            
            with gr.Row():
                canny_low_threshold = gr.Slider(
                    label="Canny Low Threshold",
                    minimum=1,
                    maximum=255,
                    step=1,
                    value=100,
                )

                canny_high_threshold = gr.Slider(
                    label="Canny High Threshold",
                    minimum=1,
                    maximum=255,
                    step=1,
                    value=200,
                )

            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=1.0,
                maximum=20.0,
                step=0.1,
                value=7.5,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=100,
                step=1,
                value=30,
            )

    gr.on(
        triggers=[run_button.click],
        fn=infer,
        inputs=[
            prompt,
            input_image,
            negative_prompt,
            seed,
            randomize_seed,
            canny_low_threshold,
            canny_high_threshold,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed, canny_image],
    )

if __name__ == "__main__":
    demo.launch()