Spaces:
Sleeping
Sleeping
File size: 5,723 Bytes
693fb49 f2a632c 693fb49 f0c0f38 693fb49 f2a632c eaa2696 f2a632c 693fb49 f2a632c 693fb49 f2a632c f0c0f38 eaa2696 f0c0f38 693fb49 f2a632c 693fb49 f2a632c f0c0f38 693fb49 f0c0f38 693fb49 f2a632c 693fb49 f0c0f38 693fb49 f0c0f38 f2a632c 693fb49 f2a632c 693fb49 f2a632c 693fb49 f0c0f38 693fb49 f2a632c 693fb49 f0c0f38 f2a632c 693fb49 f0c0f38 f2a632c f0c0f38 693fb49 f0c0f38 eaa2696 f2a632c eaa2696 f2a632c eaa2696 693fb49 f2a632c 693fb49 eaa2696 f2a632c eaa2696 693fb49 f0c0f38 693fb49 f0c0f38 693fb49 f2a632c 693fb49 f2a632c 693fb49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import numpy as np
import random
import cv2
import spaces
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
sd_model_id = "runwayml/stable-diffusion-v1-5"
controlnet_model_id = "lllyasviel/sd-controlnet-canny"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# Load ControlNet model
controlnet = ControlNetModel.from_pretrained(
controlnet_model_id,
torch_dtype=torch_dtype
)
# Load Stable Diffusion with ControlNet
pipe = StableDiffusionControlNetPipeline.from_pretrained(
sd_model_id,
controlnet=controlnet,
torch_dtype=torch_dtype,
safety_checker=None
)
pipe = pipe.to(device)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def apply_canny(image, low_threshold, high_threshold):
"""Apply Canny edge detection to the image"""
# Convert PIL image to numpy array
image_np = np.array(image)
# Convert to grayscale if the image is colored
if len(image_np.shape) == 3 and image_np.shape[2] == 3:
image_gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
else:
image_gray = image_np
# Apply Canny edge detection
edges = cv2.Canny(image_gray, low_threshold, high_threshold)
# Convert back to RGB for the model
edges_rgb = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
# Convert back to PIL image
return Image.fromarray(edges_rgb)
@spaces.GPU
def infer(
prompt,
input_image,
negative_prompt,
seed,
randomize_seed,
canny_low_threshold,
canny_high_threshold,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
return None, seed
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Process the image
if input_image is not None:
width, height = input_image.size
# Ensure width and height are valid for the model
if width > MAX_IMAGE_SIZE:
width = MAX_IMAGE_SIZE
if height > MAX_IMAGE_SIZE:
height = MAX_IMAGE_SIZE
# Apply Canny edge detection
canny_image = apply_canny(input_image, canny_low_threshold, canny_high_threshold)
image = pipe(
prompt=prompt,
image=canny_image,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
return image, seed, canny_image
css = """
#col-container {
margin: 0 auto;
max-width: 840px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # ControlNet Canny - Edge Guided Image Generation")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="Input Image",
type="pil",
height=400
)
with gr.Column(scale=1):
canny_image = gr.Image(
label="Canny Edge Detection",
height=400
)
with gr.Column(scale=1):
result = gr.Image(
label="Result",
height=400
)
prompt = gr.Text(
label="Prompt",
placeholder="Enter your prompt (e.g., 'a fantasy landscape with mountains')",
)
run_button = gr.Button("Run", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
canny_low_threshold = gr.Slider(
label="Canny Low Threshold",
minimum=1,
maximum=255,
step=1,
value=100,
)
canny_high_threshold = gr.Slider(
label="Canny High Threshold",
minimum=1,
maximum=255,
step=1,
value=200,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=20.0,
step=0.1,
value=7.5,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=30,
)
gr.on(
triggers=[run_button.click],
fn=infer,
inputs=[
prompt,
input_image,
negative_prompt,
seed,
randomize_seed,
canny_low_threshold,
canny_high_threshold,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed, canny_image],
)
if __name__ == "__main__":
demo.launch()
|