Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from huggingface_hub import PyTorchModelHubMixin | |
class DiffusionTextModel(nn.Module, PyTorchModelHubMixin): | |
def __init__(self, vocab_size, max_seq_len, max_time_steps, | |
embed_dim=128, n_layers=4, n_heads=4): | |
super().__init__() | |
self.config = { | |
"vocab_size": vocab_size, | |
"max_seq_len": max_seq_len, | |
"max_time_steps": max_time_steps, | |
"embed_dim": embed_dim, | |
"n_layers": n_layers, | |
"n_heads": n_heads | |
} | |
self.token_emb = nn.Embedding(vocab_size, embed_dim) | |
self.pos_emb = nn.Embedding(max_seq_len, embed_dim) | |
self.time_emb = nn.Embedding(max_time_steps+1, embed_dim) | |
enc_layer = nn.TransformerEncoderLayer( | |
d_model=embed_dim, nhead=n_heads, | |
dim_feedforward=4*embed_dim, activation="gelu" | |
) | |
self.transformer = nn.TransformerEncoder(enc_layer, num_layers=n_layers) | |
self.out = nn.Linear(embed_dim, vocab_size) | |
def forward(self, x, t): | |
B, L = x.shape | |
tok = self.token_emb(x) | |
pos = self.pos_emb(torch.arange(L, device=x.device).unsqueeze(0).expand(B, L)) | |
tim = self.time_emb(t).unsqueeze(1).expand(B, L, -1) | |
h = tok + pos + tim | |
h = self.transformer(h.transpose(0,1)).transpose(0,1) | |
return self.out(h) | |