Spaces:
Running
Running
Upload modeling_diffusion.py
Browse files- modeling_diffusion.py +36 -0
modeling_diffusion.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 4 |
+
|
| 5 |
+
class DiffusionTextModel(nn.Module, PyTorchModelHubMixin):
|
| 6 |
+
def __init__(self, vocab_size, max_seq_len, max_time_steps,
|
| 7 |
+
embed_dim=128, n_layers=4, n_heads=4):
|
| 8 |
+
super().__init__()
|
| 9 |
+
self.config = {
|
| 10 |
+
"vocab_size": vocab_size,
|
| 11 |
+
"max_seq_len": max_seq_len,
|
| 12 |
+
"max_time_steps": max_time_steps,
|
| 13 |
+
"embed_dim": embed_dim,
|
| 14 |
+
"n_layers": n_layers,
|
| 15 |
+
"n_heads": n_heads
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
self.token_emb = nn.Embedding(vocab_size, embed_dim)
|
| 19 |
+
self.pos_emb = nn.Embedding(max_seq_len, embed_dim)
|
| 20 |
+
self.time_emb = nn.Embedding(max_time_steps+1, embed_dim)
|
| 21 |
+
|
| 22 |
+
enc_layer = nn.TransformerEncoderLayer(
|
| 23 |
+
d_model=embed_dim, nhead=n_heads,
|
| 24 |
+
dim_feedforward=4*embed_dim, activation="gelu"
|
| 25 |
+
)
|
| 26 |
+
self.transformer = nn.TransformerEncoder(enc_layer, num_layers=n_layers)
|
| 27 |
+
self.out = nn.Linear(embed_dim, vocab_size)
|
| 28 |
+
|
| 29 |
+
def forward(self, x, t):
|
| 30 |
+
B, L = x.shape
|
| 31 |
+
tok = self.token_emb(x)
|
| 32 |
+
pos = self.pos_emb(torch.arange(L, device=x.device).unsqueeze(0).expand(B, L))
|
| 33 |
+
tim = self.time_emb(t).unsqueeze(1).expand(B, L, -1)
|
| 34 |
+
h = tok + pos + tim
|
| 35 |
+
h = self.transformer(h.transpose(0,1)).transpose(0,1)
|
| 36 |
+
return self.out(h)
|