Spaces:
Running
Running
Upload modeling_diffusion.py
Browse files- modeling_diffusion.py +36 -0
modeling_diffusion.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from huggingface_hub import PyTorchModelHubMixin
|
4 |
+
|
5 |
+
class DiffusionTextModel(nn.Module, PyTorchModelHubMixin):
|
6 |
+
def __init__(self, vocab_size, max_seq_len, max_time_steps,
|
7 |
+
embed_dim=128, n_layers=4, n_heads=4):
|
8 |
+
super().__init__()
|
9 |
+
self.config = {
|
10 |
+
"vocab_size": vocab_size,
|
11 |
+
"max_seq_len": max_seq_len,
|
12 |
+
"max_time_steps": max_time_steps,
|
13 |
+
"embed_dim": embed_dim,
|
14 |
+
"n_layers": n_layers,
|
15 |
+
"n_heads": n_heads
|
16 |
+
}
|
17 |
+
|
18 |
+
self.token_emb = nn.Embedding(vocab_size, embed_dim)
|
19 |
+
self.pos_emb = nn.Embedding(max_seq_len, embed_dim)
|
20 |
+
self.time_emb = nn.Embedding(max_time_steps+1, embed_dim)
|
21 |
+
|
22 |
+
enc_layer = nn.TransformerEncoderLayer(
|
23 |
+
d_model=embed_dim, nhead=n_heads,
|
24 |
+
dim_feedforward=4*embed_dim, activation="gelu"
|
25 |
+
)
|
26 |
+
self.transformer = nn.TransformerEncoder(enc_layer, num_layers=n_layers)
|
27 |
+
self.out = nn.Linear(embed_dim, vocab_size)
|
28 |
+
|
29 |
+
def forward(self, x, t):
|
30 |
+
B, L = x.shape
|
31 |
+
tok = self.token_emb(x)
|
32 |
+
pos = self.pos_emb(torch.arange(L, device=x.device).unsqueeze(0).expand(B, L))
|
33 |
+
tim = self.time_emb(t).unsqueeze(1).expand(B, L, -1)
|
34 |
+
h = tok + pos + tim
|
35 |
+
h = self.transformer(h.transpose(0,1)).transpose(0,1)
|
36 |
+
return self.out(h)
|