Update src/analysis/coverage_generator.py
Browse files- src/analysis/coverage_generator.py +37 -123
src/analysis/coverage_generator.py
CHANGED
@@ -1,33 +1,19 @@
|
|
1 |
import os
|
2 |
import google.generativeai as genai
|
3 |
from pathlib import Path
|
4 |
-
from tqdm import tqdm
|
5 |
import logging
|
6 |
|
7 |
-
# Set up logging
|
8 |
-
logging.basicConfig(level=logging.DEBUG,
|
9 |
-
format='%(asctime)s - %(levelname)s - %(message)s')
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
class CoverageGenerator:
|
13 |
def __init__(self):
|
14 |
-
# Initialize Gemini
|
15 |
api_key = os.getenv("GOOGLE_API_KEY")
|
16 |
if not api_key:
|
17 |
raise ValueError("GOOGLE_API_KEY not found")
|
18 |
|
19 |
genai.configure(api_key=api_key)
|
20 |
self.model = genai.GenerativeModel('gemini-pro')
|
21 |
-
|
22 |
-
# Add token tracking
|
23 |
-
self.token_usage = {
|
24 |
-
'prompt_tokens': 0,
|
25 |
-
'completion_tokens': 0,
|
26 |
-
'total_tokens': 0
|
27 |
-
}
|
28 |
-
|
29 |
-
# Set chunk size (in estimated tokens)
|
30 |
-
self.chunk_size = 8000 # Conservative size to avoid issues
|
31 |
|
32 |
def count_tokens(self, text: str) -> int:
|
33 |
"""Estimate token count using simple word-based estimation"""
|
@@ -38,177 +24,105 @@ class CoverageGenerator:
|
|
38 |
"""Split screenplay into chunks with overlap for context"""
|
39 |
logger.info("Chunking screenplay...")
|
40 |
|
41 |
-
# Split into scenes (looking for standard screenplay headers)
|
42 |
scenes = text.split("\n\n")
|
43 |
-
|
44 |
chunks = []
|
45 |
current_chunk = []
|
46 |
current_size = 0
|
47 |
-
overlap_scenes = 2
|
48 |
|
49 |
for i, scene in enumerate(scenes):
|
50 |
scene_size = self.count_tokens(scene)
|
51 |
|
52 |
if current_size + scene_size > self.chunk_size and current_chunk:
|
53 |
-
# Get overlap scenes from the end of current chunk
|
54 |
overlap = current_chunk[-overlap_scenes:] if len(current_chunk) > overlap_scenes else current_chunk
|
55 |
-
|
56 |
-
# Join current chunk and add to chunks
|
57 |
chunks.append("\n\n".join(current_chunk))
|
58 |
-
|
59 |
-
# Start new chunk with overlap for context
|
60 |
current_chunk = overlap + [scene]
|
61 |
current_size = sum(self.count_tokens(s) for s in current_chunk)
|
62 |
else:
|
63 |
current_chunk.append(scene)
|
64 |
current_size += scene_size
|
65 |
|
66 |
-
# Add the last chunk if it exists
|
67 |
if current_chunk:
|
68 |
chunks.append("\n\n".join(current_chunk))
|
69 |
|
70 |
logger.info(f"Split screenplay into {len(chunks)} chunks with context overlap")
|
71 |
return chunks
|
72 |
|
73 |
-
def read_screenplay(self, filepath: Path) -> str:
|
74 |
-
"""Read the cleaned screenplay file"""
|
75 |
-
try:
|
76 |
-
logger.info(f"Reading screenplay from: {filepath}")
|
77 |
-
with open(filepath, 'r', encoding='utf-8') as file:
|
78 |
-
text = file.read()
|
79 |
-
tokens = self.count_tokens(text)
|
80 |
-
logger.info(f"Successfully read screenplay. Length: {tokens} tokens (estimated)")
|
81 |
-
return text
|
82 |
-
except Exception as e:
|
83 |
-
logger.error(f"Error reading screenplay: {e}")
|
84 |
-
logger.error(f"Tried to read from: {filepath}")
|
85 |
-
return None
|
86 |
-
|
87 |
def generate_synopsis(self, chunk: str, chunk_num: int = 1, total_chunks: int = 1) -> str:
|
88 |
"""Generate synopsis for a single chunk"""
|
|
|
|
|
89 |
prompt = f"""As an experienced script analyst, analyze this section ({chunk_num}/{total_chunks}) of the screenplay.
|
90 |
-
|
91 |
-
|
92 |
-
- Key plot developments and their implications for the larger story
|
93 |
-
- Character appearances and development
|
94 |
-
- How this section connects to the ongoing narrative
|
95 |
-
- Major themes or motifs that emerge
|
96 |
-
|
97 |
-
Provide a summary that captures both the specific events and their significance to the larger narrative.
|
98 |
-
|
99 |
Screenplay section:
|
100 |
{chunk}"""
|
101 |
|
102 |
try:
|
103 |
-
|
104 |
-
logger.debug(f"
|
105 |
-
|
106 |
-
with tqdm(total=1, desc=f"Processing chunk {chunk_num}/{total_chunks}") as pbar:
|
107 |
-
response = self.model.generate_content(prompt)
|
108 |
-
completion_tokens = self.count_tokens(response.text)
|
109 |
-
pbar.update(1)
|
110 |
-
|
111 |
-
self.token_usage['prompt_tokens'] += prompt_tokens
|
112 |
-
self.token_usage['completion_tokens'] += completion_tokens
|
113 |
-
self.token_usage['total_tokens'] += (prompt_tokens + completion_tokens)
|
114 |
-
|
115 |
return response.text
|
116 |
except Exception as e:
|
117 |
logger.error(f"Error processing chunk {chunk_num}: {str(e)}")
|
118 |
-
logger.error("Full error details:", exc_info=True)
|
119 |
return None
|
120 |
|
121 |
def generate_final_synopsis(self, chunk_synopses: list) -> str:
|
122 |
-
"""Combine chunk synopses into
|
|
|
|
|
123 |
combined_text = "\n\n".join([f"Section {i+1}:\n{synopsis}"
|
124 |
for i, synopsis in enumerate(chunk_synopses)])
|
125 |
|
126 |
-
prompt = f"""
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
3. Major themes and how they evolve
|
133 |
-
4. Key turning points and their impact
|
134 |
-
5. The core conflict and its resolution
|
135 |
-
|
136 |
-
Ensure the synopsis flows naturally and captures the full story without revealing the seams between sections.
|
137 |
|
138 |
Section summaries:
|
139 |
{combined_text}"""
|
140 |
|
141 |
try:
|
142 |
-
|
143 |
-
|
144 |
-
response = self.model.generate_content(prompt)
|
145 |
-
pbar.update(1)
|
146 |
return response.text
|
147 |
except Exception as e:
|
148 |
logger.error(f"Error generating final synopsis: {str(e)}")
|
149 |
return None
|
150 |
|
151 |
def generate_coverage(self, screenplay_path: Path) -> bool:
|
152 |
-
"""Main method to generate
|
153 |
logger.info("Starting coverage generation")
|
154 |
|
155 |
-
|
156 |
-
'
|
157 |
-
|
158 |
-
|
159 |
-
}
|
160 |
-
|
161 |
-
with tqdm(total=4, desc="Generating coverage") as pbar:
|
162 |
-
# Read screenplay
|
163 |
-
screenplay_text = self.read_screenplay(screenplay_path)
|
164 |
-
if not screenplay_text:
|
165 |
-
return False
|
166 |
-
pbar.update(1)
|
167 |
-
|
168 |
-
# Split into chunks
|
169 |
chunks = self.chunk_screenplay(screenplay_text)
|
170 |
-
|
171 |
-
|
172 |
-
# Process each chunk
|
173 |
chunk_synopses = []
|
174 |
for i, chunk in enumerate(chunks, 1):
|
|
|
175 |
synopsis = self.generate_synopsis(chunk, i, len(chunks))
|
176 |
if synopsis:
|
177 |
chunk_synopses.append(synopsis)
|
178 |
else:
|
179 |
logger.error(f"Failed to process chunk {i}")
|
180 |
return False
|
181 |
-
pbar.update(1)
|
182 |
|
183 |
-
# Generate final synopsis
|
184 |
final_synopsis = self.generate_final_synopsis(chunk_synopses)
|
185 |
if not final_synopsis:
|
186 |
return False
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
f.write("\n\n### TOKEN USAGE SUMMARY ###\n")
|
200 |
-
f.write(f"Prompt Tokens: {self.token_usage['prompt_tokens']}\n")
|
201 |
-
f.write(f"Completion Tokens: {self.token_usage['completion_tokens']}\n")
|
202 |
-
f.write(f"Total Tokens: {self.token_usage['total_tokens']}\n")
|
203 |
-
|
204 |
-
logger.info("\nFinal Token Usage Summary:")
|
205 |
-
logger.info(f"Prompt Tokens: {self.token_usage['prompt_tokens']}")
|
206 |
-
logger.info(f"Completion Tokens: {self.token_usage['completion_tokens']}")
|
207 |
-
logger.info(f"Total Tokens: {self.token_usage['total_tokens']}")
|
208 |
-
|
209 |
-
pbar.update(1)
|
210 |
-
return True
|
211 |
-
except Exception as e:
|
212 |
-
logger.error(f"Error saving coverage: {str(e)}")
|
213 |
-
logger.error("Full error details:", exc_info=True)
|
214 |
-
return False
|
|
|
1 |
import os
|
2 |
import google.generativeai as genai
|
3 |
from pathlib import Path
|
|
|
4 |
import logging
|
5 |
|
|
|
|
|
|
|
6 |
logger = logging.getLogger(__name__)
|
7 |
|
8 |
class CoverageGenerator:
|
9 |
def __init__(self):
|
|
|
10 |
api_key = os.getenv("GOOGLE_API_KEY")
|
11 |
if not api_key:
|
12 |
raise ValueError("GOOGLE_API_KEY not found")
|
13 |
|
14 |
genai.configure(api_key=api_key)
|
15 |
self.model = genai.GenerativeModel('gemini-pro')
|
16 |
+
self.chunk_size = 8000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def count_tokens(self, text: str) -> int:
|
19 |
"""Estimate token count using simple word-based estimation"""
|
|
|
24 |
"""Split screenplay into chunks with overlap for context"""
|
25 |
logger.info("Chunking screenplay...")
|
26 |
|
|
|
27 |
scenes = text.split("\n\n")
|
|
|
28 |
chunks = []
|
29 |
current_chunk = []
|
30 |
current_size = 0
|
31 |
+
overlap_scenes = 2
|
32 |
|
33 |
for i, scene in enumerate(scenes):
|
34 |
scene_size = self.count_tokens(scene)
|
35 |
|
36 |
if current_size + scene_size > self.chunk_size and current_chunk:
|
|
|
37 |
overlap = current_chunk[-overlap_scenes:] if len(current_chunk) > overlap_scenes else current_chunk
|
|
|
|
|
38 |
chunks.append("\n\n".join(current_chunk))
|
|
|
|
|
39 |
current_chunk = overlap + [scene]
|
40 |
current_size = sum(self.count_tokens(s) for s in current_chunk)
|
41 |
else:
|
42 |
current_chunk.append(scene)
|
43 |
current_size += scene_size
|
44 |
|
|
|
45 |
if current_chunk:
|
46 |
chunks.append("\n\n".join(current_chunk))
|
47 |
|
48 |
logger.info(f"Split screenplay into {len(chunks)} chunks with context overlap")
|
49 |
return chunks
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
def generate_synopsis(self, chunk: str, chunk_num: int = 1, total_chunks: int = 1) -> str:
|
52 |
"""Generate synopsis for a single chunk"""
|
53 |
+
logger.debug(f"Generating synopsis for chunk {chunk_num}/{total_chunks}")
|
54 |
+
|
55 |
prompt = f"""As an experienced script analyst, analyze this section ({chunk_num}/{total_chunks}) of the screenplay.
|
56 |
+
Focus on: plot developments, character development, narrative connections, themes
|
57 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
Screenplay section:
|
59 |
{chunk}"""
|
60 |
|
61 |
try:
|
62 |
+
response = self.model.generate_content(prompt)
|
63 |
+
logger.debug(f"Generated synopsis for chunk {chunk_num}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
return response.text
|
65 |
except Exception as e:
|
66 |
logger.error(f"Error processing chunk {chunk_num}: {str(e)}")
|
|
|
67 |
return None
|
68 |
|
69 |
def generate_final_synopsis(self, chunk_synopses: list) -> str:
|
70 |
+
"""Combine chunk synopses into final coverage"""
|
71 |
+
logger.info("Generating final synopsis")
|
72 |
+
|
73 |
combined_text = "\n\n".join([f"Section {i+1}:\n{synopsis}"
|
74 |
for i, synopsis in enumerate(chunk_synopses)])
|
75 |
|
76 |
+
prompt = f"""Synthesize these section summaries into a comprehensive coverage document with:
|
77 |
+
1. Complete narrative arc
|
78 |
+
2. Character development
|
79 |
+
3. Major themes
|
80 |
+
4. Key turning points
|
81 |
+
5. Core conflict and resolution
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
Section summaries:
|
84 |
{combined_text}"""
|
85 |
|
86 |
try:
|
87 |
+
response = self.model.generate_content(prompt)
|
88 |
+
logger.info("Final synopsis generated")
|
|
|
|
|
89 |
return response.text
|
90 |
except Exception as e:
|
91 |
logger.error(f"Error generating final synopsis: {str(e)}")
|
92 |
return None
|
93 |
|
94 |
def generate_coverage(self, screenplay_path: Path) -> bool:
|
95 |
+
"""Main method to generate coverage document"""
|
96 |
logger.info("Starting coverage generation")
|
97 |
|
98 |
+
try:
|
99 |
+
with open(screenplay_path, 'r', encoding='utf-8') as f:
|
100 |
+
screenplay_text = f.read()
|
101 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
chunks = self.chunk_screenplay(screenplay_text)
|
103 |
+
|
|
|
|
|
104 |
chunk_synopses = []
|
105 |
for i, chunk in enumerate(chunks, 1):
|
106 |
+
logger.info(f"Processing chunk {i}/{len(chunks)}")
|
107 |
synopsis = self.generate_synopsis(chunk, i, len(chunks))
|
108 |
if synopsis:
|
109 |
chunk_synopses.append(synopsis)
|
110 |
else:
|
111 |
logger.error(f"Failed to process chunk {i}")
|
112 |
return False
|
|
|
113 |
|
|
|
114 |
final_synopsis = self.generate_final_synopsis(chunk_synopses)
|
115 |
if not final_synopsis:
|
116 |
return False
|
117 |
|
118 |
+
output_path = screenplay_path.parent / "coverage.txt"
|
119 |
+
with open(output_path, 'w', encoding='utf-8') as f:
|
120 |
+
f.write("SCREENPLAY COVERAGE\n\n")
|
121 |
+
f.write(final_synopsis)
|
122 |
+
|
123 |
+
logger.info("Coverage generation complete")
|
124 |
+
return True
|
125 |
+
|
126 |
+
except Exception as e:
|
127 |
+
logger.error(f"Error in coverage generation: {str(e)}")
|
128 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|