Update src/processing/gemini_processor.py
Browse files
src/processing/gemini_processor.py
CHANGED
|
@@ -1,43 +1,34 @@
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
from pathlib import Path
|
| 4 |
-
from typing import List
|
| 5 |
import google.generativeai as genai
|
| 6 |
from PyPDF2 import PdfReader
|
| 7 |
from tqdm import tqdm
|
|
|
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
class GeminiProcessor:
|
| 11 |
-
|
| 12 |
def __init__(self):
|
| 13 |
self.api_key = os.getenv("GOOGLE_API_KEY")
|
| 14 |
if not self.api_key:
|
| 15 |
raise ValueError("GOOGLE_API_KEY not found")
|
| 16 |
|
| 17 |
-
# Configure Gemini
|
| 18 |
genai.configure(api_key=self.api_key)
|
| 19 |
self.model = genai.GenerativeModel('gemini-pro')
|
| 20 |
|
| 21 |
def preprocess_text(self, text: str) -> str:
|
| 22 |
"""Enhanced preprocessing for screenplay text"""
|
| 23 |
-
|
|
|
|
| 24 |
text = re.sub(r'<[^>]+>', '', text)
|
| 25 |
-
|
| 26 |
-
# Fix standalone scene headings
|
| 27 |
text = re.sub(r'\n(INT\.|EXT\.|INT\/EXT\.)\s*\n', '', text)
|
| 28 |
-
|
| 29 |
-
# Remove line numbers and (CONT'D)
|
| 30 |
text = re.sub(r'\d+\.$', '', text, flags=re.MULTILINE)
|
| 31 |
text = re.sub(r'\(CONT\'D\)\d*', '', text)
|
| 32 |
-
|
| 33 |
-
# Fix spacing around punctuation
|
| 34 |
text = re.sub(r'\s+([.,!?])', r'\1', text)
|
| 35 |
-
|
| 36 |
-
# Clean up multiple spaces and line breaks
|
| 37 |
text = re.sub(r' +', ' ', text)
|
| 38 |
text = re.sub(r'\n{3,}', '\n\n', text)
|
| 39 |
|
| 40 |
-
# Remove repetitive content
|
| 41 |
lines = text.split('\n')
|
| 42 |
cleaned_lines = []
|
| 43 |
prev_line = None
|
|
@@ -50,22 +41,23 @@ class GeminiProcessor:
|
|
| 50 |
cleaned_lines.append(line)
|
| 51 |
prev_line = line
|
| 52 |
|
|
|
|
| 53 |
return '\n'.join(cleaned_lines)
|
| 54 |
|
| 55 |
def split_into_scenes(self, text: str) -> list:
|
| 56 |
"""Split screenplay into scenes while preserving headers and content"""
|
| 57 |
-
|
|
|
|
| 58 |
scene_pattern = r'((?:INT\.|EXT\.|INT\/EXT\.)[^\n]+\n(?:(?!(?:INT\.|EXT\.|INT\/EXT\.))[^\n]+\n)*)'
|
| 59 |
-
|
| 60 |
scenes = re.findall(scene_pattern, text, re.MULTILINE)
|
| 61 |
|
| 62 |
-
# Clean and validate scenes
|
| 63 |
valid_scenes = []
|
| 64 |
for scene in scenes:
|
| 65 |
scene = scene.strip()
|
| 66 |
if scene:
|
| 67 |
valid_scenes.append(scene)
|
| 68 |
|
|
|
|
| 69 |
return valid_scenes
|
| 70 |
|
| 71 |
def clean_scene(self, scene: str) -> str:
|
|
@@ -80,48 +72,41 @@ class GeminiProcessor:
|
|
| 80 |
response = self.model.generate_content(prompt)
|
| 81 |
if response.text:
|
| 82 |
cleaned = response.text
|
| 83 |
-
# Basic validation
|
| 84 |
if abs(len(scene.split()) - len(cleaned.split())) <= 3:
|
| 85 |
return cleaned.strip()
|
| 86 |
return scene
|
| 87 |
|
| 88 |
except Exception as e:
|
| 89 |
-
|
| 90 |
return scene
|
| 91 |
|
| 92 |
def process_screenplay(self, pdf_path: str, output_path: str) -> bool:
|
| 93 |
"""Process entire screenplay"""
|
| 94 |
try:
|
| 95 |
-
|
| 96 |
with open(pdf_path, 'rb') as file:
|
| 97 |
pdf = PdfReader(file)
|
| 98 |
text = '\n'.join(page.extract_text() for page in pdf.pages)
|
| 99 |
|
| 100 |
-
#print("Extracted Text:")
|
| 101 |
-
#print(text) # This will show you what text was actually extracted from the PDF
|
| 102 |
-
|
| 103 |
-
# Initial preprocessing
|
| 104 |
text = self.preprocess_text(text)
|
| 105 |
-
|
| 106 |
-
# Split into scenes
|
| 107 |
scenes = self.split_into_scenes(text)
|
| 108 |
-
|
| 109 |
|
| 110 |
-
# Process each scene
|
| 111 |
cleaned_scenes = []
|
| 112 |
-
for scene in
|
|
|
|
| 113 |
cleaned = self.clean_scene(scene)
|
| 114 |
if cleaned:
|
| 115 |
cleaned = self.preprocess_text(cleaned)
|
| 116 |
cleaned_scenes.append(cleaned)
|
| 117 |
|
| 118 |
-
# Save result
|
| 119 |
Path(output_path).parent.mkdir(parents=True, exist_ok=True)
|
| 120 |
with open(output_path, 'w', encoding='utf-8') as f:
|
| 121 |
f.write('\n\n'.join(cleaned_scenes))
|
| 122 |
|
|
|
|
| 123 |
return True
|
| 124 |
|
| 125 |
except Exception as e:
|
| 126 |
-
|
| 127 |
-
return False
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
from pathlib import Path
|
|
|
|
| 4 |
import google.generativeai as genai
|
| 5 |
from PyPDF2 import PdfReader
|
| 6 |
from tqdm import tqdm
|
| 7 |
+
import logging
|
| 8 |
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
|
| 11 |
class GeminiProcessor:
|
|
|
|
| 12 |
def __init__(self):
|
| 13 |
self.api_key = os.getenv("GOOGLE_API_KEY")
|
| 14 |
if not self.api_key:
|
| 15 |
raise ValueError("GOOGLE_API_KEY not found")
|
| 16 |
|
|
|
|
| 17 |
genai.configure(api_key=self.api_key)
|
| 18 |
self.model = genai.GenerativeModel('gemini-pro')
|
| 19 |
|
| 20 |
def preprocess_text(self, text: str) -> str:
|
| 21 |
"""Enhanced preprocessing for screenplay text"""
|
| 22 |
+
logger.debug("Starting text preprocessing")
|
| 23 |
+
|
| 24 |
text = re.sub(r'<[^>]+>', '', text)
|
|
|
|
|
|
|
| 25 |
text = re.sub(r'\n(INT\.|EXT\.|INT\/EXT\.)\s*\n', '', text)
|
|
|
|
|
|
|
| 26 |
text = re.sub(r'\d+\.$', '', text, flags=re.MULTILINE)
|
| 27 |
text = re.sub(r'\(CONT\'D\)\d*', '', text)
|
|
|
|
|
|
|
| 28 |
text = re.sub(r'\s+([.,!?])', r'\1', text)
|
|
|
|
|
|
|
| 29 |
text = re.sub(r' +', ' ', text)
|
| 30 |
text = re.sub(r'\n{3,}', '\n\n', text)
|
| 31 |
|
|
|
|
| 32 |
lines = text.split('\n')
|
| 33 |
cleaned_lines = []
|
| 34 |
prev_line = None
|
|
|
|
| 41 |
cleaned_lines.append(line)
|
| 42 |
prev_line = line
|
| 43 |
|
| 44 |
+
logger.debug("Text preprocessing complete")
|
| 45 |
return '\n'.join(cleaned_lines)
|
| 46 |
|
| 47 |
def split_into_scenes(self, text: str) -> list:
|
| 48 |
"""Split screenplay into scenes while preserving headers and content"""
|
| 49 |
+
logger.debug("Splitting into scenes")
|
| 50 |
+
|
| 51 |
scene_pattern = r'((?:INT\.|EXT\.|INT\/EXT\.)[^\n]+\n(?:(?!(?:INT\.|EXT\.|INT\/EXT\.))[^\n]+\n)*)'
|
|
|
|
| 52 |
scenes = re.findall(scene_pattern, text, re.MULTILINE)
|
| 53 |
|
|
|
|
| 54 |
valid_scenes = []
|
| 55 |
for scene in scenes:
|
| 56 |
scene = scene.strip()
|
| 57 |
if scene:
|
| 58 |
valid_scenes.append(scene)
|
| 59 |
|
| 60 |
+
logger.info(f"Found {len(valid_scenes)} scenes")
|
| 61 |
return valid_scenes
|
| 62 |
|
| 63 |
def clean_scene(self, scene: str) -> str:
|
|
|
|
| 72 |
response = self.model.generate_content(prompt)
|
| 73 |
if response.text:
|
| 74 |
cleaned = response.text
|
|
|
|
| 75 |
if abs(len(scene.split()) - len(cleaned.split())) <= 3:
|
| 76 |
return cleaned.strip()
|
| 77 |
return scene
|
| 78 |
|
| 79 |
except Exception as e:
|
| 80 |
+
logger.error(f"Error cleaning scene: {str(e)}")
|
| 81 |
return scene
|
| 82 |
|
| 83 |
def process_screenplay(self, pdf_path: str, output_path: str) -> bool:
|
| 84 |
"""Process entire screenplay"""
|
| 85 |
try:
|
| 86 |
+
logger.info(f"Processing screenplay: {pdf_path}")
|
| 87 |
with open(pdf_path, 'rb') as file:
|
| 88 |
pdf = PdfReader(file)
|
| 89 |
text = '\n'.join(page.extract_text() for page in pdf.pages)
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
text = self.preprocess_text(text)
|
|
|
|
|
|
|
| 92 |
scenes = self.split_into_scenes(text)
|
| 93 |
+
logger.info(f"Processing {len(scenes)} scenes")
|
| 94 |
|
|
|
|
| 95 |
cleaned_scenes = []
|
| 96 |
+
for i, scene in enumerate(scenes, 1):
|
| 97 |
+
logger.debug(f"Processing scene {i}/{len(scenes)}")
|
| 98 |
cleaned = self.clean_scene(scene)
|
| 99 |
if cleaned:
|
| 100 |
cleaned = self.preprocess_text(cleaned)
|
| 101 |
cleaned_scenes.append(cleaned)
|
| 102 |
|
|
|
|
| 103 |
Path(output_path).parent.mkdir(parents=True, exist_ok=True)
|
| 104 |
with open(output_path, 'w', encoding='utf-8') as f:
|
| 105 |
f.write('\n\n'.join(cleaned_scenes))
|
| 106 |
|
| 107 |
+
logger.info("Screenplay processing complete")
|
| 108 |
return True
|
| 109 |
|
| 110 |
except Exception as e:
|
| 111 |
+
logger.error(f"Error processing screenplay: {str(e)}")
|
| 112 |
+
return False
|