Spaces:
Running
Running
Deploy real API calling version
Browse files- Implements Gradio Client API to call official HunyuanVideo-Foley Space
- Falls back to Hugging Face Inference API as secondary option
- Smart API inference with multiple fallback strategies
- No local model loading - solves 16GB memory limit issue
- Real AI audio generation through remote API calls
- Comprehensive error handling and user feedback
- Minimal dependencies focused on API calling
- app.py +221 -136
- app_real_api.py +326 -0
- requirements.txt +8 -5
- requirements_api.txt +10 -0
app.py
CHANGED
@@ -1,146 +1,211 @@
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
import gradio as gr
|
4 |
-
import torch
|
5 |
-
import torchaudio
|
6 |
-
from loguru import logger
|
7 |
-
from typing import Optional, Tuple
|
8 |
-
import random
|
9 |
-
import numpy as np
|
10 |
import requests
|
11 |
import json
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
def create_demo_audio(video_file, text_prompt: str, duration: float = 5.0) -> str:
|
16 |
-
"""Create a simple demo audio file"""
|
17 |
-
sample_rate = 48000
|
18 |
-
duration_samples = int(duration * sample_rate)
|
19 |
-
|
20 |
-
# Generate a simple tone as demo
|
21 |
-
t = torch.linspace(0, duration, duration_samples)
|
22 |
-
frequency = 440 # A note
|
23 |
-
audio = 0.3 * torch.sin(2 * 3.14159 * frequency * t)
|
24 |
-
|
25 |
-
# Add some variation based on text prompt length
|
26 |
-
if text_prompt:
|
27 |
-
freq_mod = len(text_prompt) * 10
|
28 |
-
audio += 0.1 * torch.sin(2 * 3.14159 * freq_mod * t)
|
29 |
-
|
30 |
-
# Save to temporary file
|
31 |
-
temp_dir = tempfile.mkdtemp()
|
32 |
-
audio_path = os.path.join(temp_dir, "demo_audio.wav")
|
33 |
-
torchaudio.save(audio_path, audio.unsqueeze(0), sample_rate)
|
34 |
-
|
35 |
-
return audio_path
|
36 |
-
|
37 |
-
def process_video_demo(video_file, text_prompt: str, guidance_scale: float, inference_steps: int, sample_nums: int) -> Tuple[list, str]:
|
38 |
-
"""Working demo version that generates simple audio"""
|
39 |
-
|
40 |
-
if video_file is None:
|
41 |
-
return [], "❌ Please upload a video file!"
|
42 |
-
|
43 |
-
if text_prompt is None:
|
44 |
-
text_prompt = ""
|
45 |
-
|
46 |
try:
|
47 |
-
|
48 |
-
logger.info(f"Text prompt: {text_prompt}")
|
49 |
|
50 |
-
|
51 |
-
video_outputs = []
|
52 |
-
for i in range(min(sample_nums, 3)): # Limit to 3 samples
|
53 |
-
demo_audio = create_demo_audio(video_file, f"{text_prompt}_sample_{i+1}")
|
54 |
-
|
55 |
-
# For demo, just return the audio file path
|
56 |
-
# In a real implementation, this would be merged with video
|
57 |
-
video_outputs.append(demo_audio)
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
return
|
72 |
|
73 |
except Exception as e:
|
74 |
-
|
75 |
-
return [], f"❌ Demo processing failed: {str(e)}"
|
76 |
|
77 |
-
def
|
78 |
-
"""
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
font-family: 'Inter', sans-serif;
|
83 |
-
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
84 |
-
}
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
border-radius: 10px;
|
99 |
padding: 1rem;
|
100 |
margin: 1rem 0;
|
101 |
-
color: #
|
102 |
}
|
103 |
"""
|
104 |
|
105 |
-
with gr.Blocks(css=css, title="HunyuanVideo-Foley
|
106 |
|
107 |
# Header
|
108 |
-
|
109 |
-
|
110 |
<h1>🎵 HunyuanVideo-Foley</h1>
|
111 |
-
<p>
|
112 |
-
|
|
|
113 |
|
114 |
-
#
|
115 |
gr.HTML("""
|
116 |
-
<div class="
|
117 |
-
<strong
|
118 |
-
|
119 |
-
<strong
|
120 |
</div>
|
121 |
""")
|
122 |
|
123 |
with gr.Row():
|
124 |
-
#
|
125 |
with gr.Column(scale=1):
|
126 |
-
gr.Markdown("### 📹
|
127 |
|
128 |
video_input = gr.Video(
|
129 |
-
label="
|
130 |
-
info="
|
131 |
)
|
132 |
|
133 |
text_input = gr.Textbox(
|
134 |
-
label="🎯
|
135 |
-
placeholder="
|
136 |
-
lines=3
|
|
|
137 |
)
|
138 |
|
139 |
with gr.Row():
|
140 |
guidance_scale = gr.Slider(
|
141 |
minimum=1.0,
|
142 |
maximum=10.0,
|
143 |
-
value=4.
|
144 |
step=0.1,
|
145 |
label="🎚️ CFG Scale"
|
146 |
)
|
@@ -150,87 +215,107 @@ def create_working_interface():
|
|
150 |
maximum=100,
|
151 |
value=50,
|
152 |
step=5,
|
153 |
-
label="⚡
|
154 |
)
|
155 |
|
156 |
sample_nums = gr.Slider(
|
157 |
minimum=1,
|
158 |
-
maximum=
|
159 |
value=1,
|
160 |
step=1,
|
161 |
-
label="🎲
|
162 |
)
|
163 |
|
164 |
-
generate_btn = gr.Button(
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
#
|
167 |
with gr.Column(scale=1):
|
168 |
-
gr.Markdown("### 🎵
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
173 |
|
174 |
status_output = gr.Textbox(
|
175 |
-
label="
|
176 |
interactive=False,
|
177 |
-
lines=
|
|
|
178 |
)
|
179 |
|
180 |
-
#
|
181 |
-
def
|
182 |
-
|
183 |
-
|
184 |
-
gr.update(visible=sample_nums >= 2),
|
185 |
-
gr.update(visible=sample_nums >= 3)
|
186 |
-
]
|
187 |
-
|
188 |
-
def process_demo(video_file, text_prompt, guidance_scale, inference_steps, sample_nums):
|
189 |
-
audio_files, status_msg = process_video_demo(
|
190 |
video_file, text_prompt, guidance_scale, inference_steps, int(sample_nums)
|
191 |
)
|
192 |
|
193 |
-
#
|
194 |
-
outputs = [None
|
195 |
-
|
196 |
-
outputs[i] = audio_file
|
197 |
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
-
#
|
|
|
|
|
|
|
|
|
|
|
201 |
sample_nums.change(
|
202 |
fn=update_visibility,
|
203 |
inputs=[sample_nums],
|
204 |
-
outputs=
|
205 |
)
|
206 |
|
207 |
generate_btn.click(
|
208 |
-
fn=
|
209 |
inputs=[video_input, text_input, guidance_scale, inference_steps, sample_nums],
|
210 |
-
outputs=[
|
211 |
)
|
212 |
|
213 |
# Footer
|
214 |
gr.HTML("""
|
215 |
-
<div style="text-align: center; padding: 2rem; color: #666;">
|
216 |
-
<p
|
217 |
-
<p
|
|
|
218 |
</div>
|
219 |
""")
|
220 |
|
221 |
return app
|
222 |
|
223 |
if __name__ == "__main__":
|
224 |
-
#
|
225 |
logger.remove()
|
226 |
logger.add(lambda msg: print(msg, end=''), level="INFO")
|
227 |
|
228 |
-
logger.info("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
-
#
|
231 |
-
app =
|
232 |
|
233 |
-
logger.info("
|
234 |
|
235 |
app.launch(
|
236 |
server_name="0.0.0.0",
|
|
|
1 |
import os
|
2 |
import tempfile
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import requests
|
5 |
import json
|
6 |
+
from loguru import logger
|
7 |
+
from typing import Optional, Tuple
|
8 |
+
import base64
|
9 |
+
import time
|
10 |
|
11 |
+
def call_gradio_client_api(video_file, text_prompt, guidance_scale, inference_steps, sample_nums):
|
12 |
+
"""调用官方Hugging Face Space的API"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
try:
|
14 |
+
from gradio_client import Client
|
|
|
15 |
|
16 |
+
logger.info("连接到官方 HunyuanVideo-Foley Space...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# 连接到官方Space
|
19 |
+
client = Client("tencent/HunyuanVideo-Foley")
|
20 |
+
|
21 |
+
logger.info("发送推理请求...")
|
22 |
+
|
23 |
+
# 调用推理函数
|
24 |
+
result = client.predict(
|
25 |
+
video_file, # 视频文件
|
26 |
+
text_prompt, # 文本提示
|
27 |
+
guidance_scale, # CFG scale
|
28 |
+
inference_steps, # 推理步数
|
29 |
+
sample_nums, # 样本数量
|
30 |
+
api_name="/infer_single_video" # API端点名称
|
31 |
+
)
|
32 |
+
|
33 |
+
return result, "✅ 成功通过官方API生成音频!"
|
34 |
+
|
35 |
+
except Exception as e:
|
36 |
+
error_msg = str(e)
|
37 |
+
logger.error(f"Gradio Client API 调用失败: {error_msg}")
|
38 |
+
|
39 |
+
if "not found" in error_msg.lower():
|
40 |
+
return None, "❌ 官方Space的API端点未找到,可能接口已更改"
|
41 |
+
elif "connection" in error_msg.lower():
|
42 |
+
return None, "❌ 无法连接到官方Space,请检查网络"
|
43 |
+
elif "queue" in error_msg.lower():
|
44 |
+
return None, "⏳ 官方Space繁忙,请稍后重试"
|
45 |
+
else:
|
46 |
+
return None, f"❌ API调用错误: {error_msg}"
|
47 |
|
48 |
+
def call_huggingface_inference_api(video_file, text_prompt):
|
49 |
+
"""调用Hugging Face Inference API"""
|
50 |
+
try:
|
51 |
+
logger.info("尝试Hugging Face Inference API...")
|
52 |
+
|
53 |
+
API_URL = "https://api-inference.huggingface.co/models/tencent/HunyuanVideo-Foley"
|
54 |
+
|
55 |
+
# 读取视频文件
|
56 |
+
with open(video_file, "rb") as f:
|
57 |
+
video_data = f.read()
|
58 |
+
|
59 |
+
# 准备请求数据
|
60 |
+
headers = {
|
61 |
+
"Authorization": f"Bearer {os.environ.get('HF_TOKEN', '')}",
|
62 |
+
}
|
63 |
+
|
64 |
+
# 发送请求
|
65 |
+
response = requests.post(
|
66 |
+
API_URL,
|
67 |
+
headers=headers,
|
68 |
+
json={"inputs": {"video": base64.b64encode(video_data).decode(), "text": text_prompt}},
|
69 |
+
timeout=300
|
70 |
+
)
|
71 |
+
|
72 |
+
if response.status_code == 200:
|
73 |
+
# 保存结果
|
74 |
+
temp_dir = tempfile.mkdtemp()
|
75 |
+
audio_path = os.path.join(temp_dir, "generated_audio.wav")
|
76 |
+
with open(audio_path, 'wb') as f:
|
77 |
+
f.write(response.content)
|
78 |
+
return [audio_path], "✅ 通过Hugging Face API生成成功!"
|
79 |
+
else:
|
80 |
+
logger.error(f"HF API错误: {response.status_code}")
|
81 |
+
return None, f"❌ Hugging Face API返回错误: {response.status_code}"
|
82 |
+
|
83 |
+
except Exception as e:
|
84 |
+
logger.error(f"HF API调用失败: {str(e)}")
|
85 |
+
return None, f"❌ Hugging Face API调用失败: {str(e)}"
|
86 |
|
87 |
+
def try_alternative_apis(video_file, text_prompt):
|
88 |
+
"""尝试其他可能的API服务"""
|
89 |
+
|
90 |
+
# 1. 尝试通过公开的demo接口
|
91 |
+
try:
|
92 |
+
logger.info("尝试demo接口...")
|
93 |
+
|
94 |
+
# 这里可以尝试其他公开的API服务
|
95 |
+
# 比如Replicate、RunPod等
|
96 |
|
97 |
+
return None, "❌ 暂无可用的替代API服务"
|
98 |
|
99 |
except Exception as e:
|
100 |
+
return None, f"❌ 替代API调用失败: {str(e)}"
|
|
|
101 |
|
102 |
+
def smart_api_inference(video_file, text_prompt, guidance_scale=4.5, inference_steps=50, sample_nums=1):
|
103 |
+
"""智能API推理 - 尝试多种API调用方式"""
|
104 |
|
105 |
+
if video_file is None:
|
106 |
+
return [], "❌ 请上传视频文件!"
|
|
|
|
|
|
|
107 |
|
108 |
+
if not text_prompt:
|
109 |
+
text_prompt = "audio for this video"
|
110 |
+
|
111 |
+
logger.info(f"开始API推理: {video_file}")
|
112 |
+
logger.info(f"文本提示: {text_prompt}")
|
113 |
+
|
114 |
+
status_updates = []
|
115 |
+
|
116 |
+
# 方法1: 尝试Gradio Client (最可能成功)
|
117 |
+
status_updates.append("🔄 尝试连接官方Space API...")
|
118 |
+
try:
|
119 |
+
result, status = call_gradio_client_api(
|
120 |
+
video_file, text_prompt, guidance_scale, inference_steps, sample_nums
|
121 |
+
)
|
122 |
+
if result:
|
123 |
+
return result, "\n".join(status_updates + [status])
|
124 |
+
status_updates.append(status)
|
125 |
+
except ImportError:
|
126 |
+
status_updates.append("⚠️ gradio_client未安装,跳过官方API调用")
|
127 |
+
|
128 |
+
# 方法2: 尝试Hugging Face Inference API
|
129 |
+
status_updates.append("🔄 尝试Hugging Face Inference API...")
|
130 |
+
result, status = call_huggingface_inference_api(video_file, text_prompt)
|
131 |
+
if result:
|
132 |
+
return result, "\n".join(status_updates + [status])
|
133 |
+
status_updates.append(status)
|
134 |
+
|
135 |
+
# 方法3: 尝试其他API
|
136 |
+
status_updates.append("🔄 尝试替代API服务...")
|
137 |
+
result, status = try_alternative_apis(video_file, text_prompt)
|
138 |
+
status_updates.append(status)
|
139 |
+
|
140 |
+
# 所有方法都失败了
|
141 |
+
final_message = "\n".join(status_updates + [
|
142 |
+
"",
|
143 |
+
"💡 **解决方案建议:**",
|
144 |
+
"• 安装 gradio_client: pip install gradio_client",
|
145 |
+
"• 配置 HF_TOKEN 环境变量",
|
146 |
+
"• 等待官方Space负载降低",
|
147 |
+
"• 本地运行完整模型(需24GB+ RAM)",
|
148 |
+
"",
|
149 |
+
"🔗 **官方Space**: https://huggingface.co/spaces/tencent/HunyuanVideo-Foley"
|
150 |
+
])
|
151 |
|
152 |
+
return [], final_message
|
153 |
+
|
154 |
+
def create_real_api_interface():
|
155 |
+
"""创建真实API调用界面"""
|
156 |
+
|
157 |
+
css = """
|
158 |
+
.api-status {
|
159 |
+
background: #f0f8ff;
|
160 |
+
border: 2px solid #4169e1;
|
161 |
border-radius: 10px;
|
162 |
padding: 1rem;
|
163 |
margin: 1rem 0;
|
164 |
+
color: #191970;
|
165 |
}
|
166 |
"""
|
167 |
|
168 |
+
with gr.Blocks(css=css, title="HunyuanVideo-Foley API Client") as app:
|
169 |
|
170 |
# Header
|
171 |
+
gr.HTML("""
|
172 |
+
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 20px; margin-bottom: 2rem; color: white;">
|
173 |
<h1>🎵 HunyuanVideo-Foley</h1>
|
174 |
+
<p>API客户端 - 调用真实模型推理</p>
|
175 |
+
</div>
|
176 |
+
""")
|
177 |
|
178 |
+
# API Status Notice
|
179 |
gr.HTML("""
|
180 |
+
<div class="api-status">
|
181 |
+
<strong>🌐 真实API调用模式:</strong> 这个版本会通过API调用真实的HunyuanVideo-Foley模型进行推理。
|
182 |
+
<br><strong>优点:</strong> 真实AI音频生成,无需本地大内存
|
183 |
+
<br><strong>缺点:</strong> 依赖外部服务可用性,可能需要等待队列
|
184 |
</div>
|
185 |
""")
|
186 |
|
187 |
with gr.Row():
|
188 |
+
# 输入区域
|
189 |
with gr.Column(scale=1):
|
190 |
+
gr.Markdown("### 📹 视频输入")
|
191 |
|
192 |
video_input = gr.Video(
|
193 |
+
label="上传视频",
|
194 |
+
info="支持MP4、AVI、MOV等格式"
|
195 |
)
|
196 |
|
197 |
text_input = gr.Textbox(
|
198 |
+
label="🎯 音频描述",
|
199 |
+
placeholder="描述你想要的音频效果,例如:脚步声、雨声、车辆行驶等",
|
200 |
+
lines=3,
|
201 |
+
value="audio sound effects for this video"
|
202 |
)
|
203 |
|
204 |
with gr.Row():
|
205 |
guidance_scale = gr.Slider(
|
206 |
minimum=1.0,
|
207 |
maximum=10.0,
|
208 |
+
value=4.5,
|
209 |
step=0.1,
|
210 |
label="🎚️ CFG Scale"
|
211 |
)
|
|
|
215 |
maximum=100,
|
216 |
value=50,
|
217 |
step=5,
|
218 |
+
label="⚡ 推理步数"
|
219 |
)
|
220 |
|
221 |
sample_nums = gr.Slider(
|
222 |
minimum=1,
|
223 |
+
maximum=6,
|
224 |
value=1,
|
225 |
step=1,
|
226 |
+
label="🎲 样本数量"
|
227 |
)
|
228 |
|
229 |
+
generate_btn = gr.Button(
|
230 |
+
"🎵 调用API生成音频",
|
231 |
+
variant="primary",
|
232 |
+
size="lg"
|
233 |
+
)
|
234 |
|
235 |
+
# 输出区域
|
236 |
with gr.Column(scale=1):
|
237 |
+
gr.Markdown("### 🎵 生成结果")
|
238 |
|
239 |
+
audio_outputs = []
|
240 |
+
for i in range(6):
|
241 |
+
audio_output = gr.Audio(
|
242 |
+
label=f"样本 {i+1}",
|
243 |
+
visible=(i == 0) # 只显示第一个
|
244 |
+
)
|
245 |
+
audio_outputs.append(audio_output)
|
246 |
|
247 |
status_output = gr.Textbox(
|
248 |
+
label="API状态",
|
249 |
interactive=False,
|
250 |
+
lines=10,
|
251 |
+
placeholder="等待API调用..."
|
252 |
)
|
253 |
|
254 |
+
# 事件处理
|
255 |
+
def process_with_api(video_file, text_prompt, guidance_scale, inference_steps, sample_nums):
|
256 |
+
# 调用API推理
|
257 |
+
results, status_msg = smart_api_inference(
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
video_file, text_prompt, guidance_scale, inference_steps, int(sample_nums)
|
259 |
)
|
260 |
|
261 |
+
# 准备输出
|
262 |
+
outputs = [None] * 6
|
263 |
+
visibilities = [False] * 6
|
|
|
264 |
|
265 |
+
if results and isinstance(results, list):
|
266 |
+
for i, result in enumerate(results[:6]):
|
267 |
+
outputs[i] = result
|
268 |
+
visibilities[i] = True
|
269 |
+
|
270 |
+
return outputs + visibilities + [status_msg]
|
271 |
|
272 |
+
# 动态显示样本数量
|
273 |
+
def update_visibility(sample_nums):
|
274 |
+
sample_nums = int(sample_nums)
|
275 |
+
return [gr.update(visible=(i < sample_nums)) for i in range(6)]
|
276 |
+
|
277 |
+
# 连接事件
|
278 |
sample_nums.change(
|
279 |
fn=update_visibility,
|
280 |
inputs=[sample_nums],
|
281 |
+
outputs=audio_outputs
|
282 |
)
|
283 |
|
284 |
generate_btn.click(
|
285 |
+
fn=process_with_api,
|
286 |
inputs=[video_input, text_input, guidance_scale, inference_steps, sample_nums],
|
287 |
+
outputs=audio_outputs + [gr.update(visible=(i < 6)) for i in range(6)] + [status_output]
|
288 |
)
|
289 |
|
290 |
# Footer
|
291 |
gr.HTML("""
|
292 |
+
<div style="text-align: center; padding: 2rem; color: #666; border-top: 1px solid #eee; margin-top: 2rem;">
|
293 |
+
<p><strong>📡 API调用版本</strong> - 通过网络调用真实模型进行推理</p>
|
294 |
+
<p>🔗 官方Space: <a href="https://huggingface.co/spaces/tencent/HunyuanVideo-Foley" target="_blank">tencent/HunyuanVideo-Foley</a></p>
|
295 |
+
<p>⚠️ 需要安装: <code>pip install gradio_client</code></p>
|
296 |
</div>
|
297 |
""")
|
298 |
|
299 |
return app
|
300 |
|
301 |
if __name__ == "__main__":
|
302 |
+
# 设置日志
|
303 |
logger.remove()
|
304 |
logger.add(lambda msg: print(msg, end=''), level="INFO")
|
305 |
|
306 |
+
logger.info("启动 HunyuanVideo-Foley API 客户端...")
|
307 |
+
|
308 |
+
# 检查依赖
|
309 |
+
try:
|
310 |
+
import gradio_client
|
311 |
+
logger.info("✅ gradio_client 已安装")
|
312 |
+
except ImportError:
|
313 |
+
logger.warning("⚠️ gradio_client 未安装,API调用功能可能受限")
|
314 |
|
315 |
+
# 创建并启动应用
|
316 |
+
app = create_real_api_interface()
|
317 |
|
318 |
+
logger.info("API客户端就绪,准备调用真实模型...")
|
319 |
|
320 |
app.launch(
|
321 |
server_name="0.0.0.0",
|
app_real_api.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import gradio as gr
|
4 |
+
import requests
|
5 |
+
import json
|
6 |
+
from loguru import logger
|
7 |
+
from typing import Optional, Tuple
|
8 |
+
import base64
|
9 |
+
import time
|
10 |
+
|
11 |
+
def call_gradio_client_api(video_file, text_prompt, guidance_scale, inference_steps, sample_nums):
|
12 |
+
"""调用官方Hugging Face Space的API"""
|
13 |
+
try:
|
14 |
+
from gradio_client import Client
|
15 |
+
|
16 |
+
logger.info("连接到官方 HunyuanVideo-Foley Space...")
|
17 |
+
|
18 |
+
# 连接到官方Space
|
19 |
+
client = Client("tencent/HunyuanVideo-Foley")
|
20 |
+
|
21 |
+
logger.info("发送推理请求...")
|
22 |
+
|
23 |
+
# 调用推理函数
|
24 |
+
result = client.predict(
|
25 |
+
video_file, # 视频文件
|
26 |
+
text_prompt, # 文本提示
|
27 |
+
guidance_scale, # CFG scale
|
28 |
+
inference_steps, # 推理步数
|
29 |
+
sample_nums, # 样本数量
|
30 |
+
api_name="/infer_single_video" # API端点名称
|
31 |
+
)
|
32 |
+
|
33 |
+
return result, "✅ 成功通过官方API生成音频!"
|
34 |
+
|
35 |
+
except Exception as e:
|
36 |
+
error_msg = str(e)
|
37 |
+
logger.error(f"Gradio Client API 调用失败: {error_msg}")
|
38 |
+
|
39 |
+
if "not found" in error_msg.lower():
|
40 |
+
return None, "❌ 官方Space的API端点未找到,可能接口已更改"
|
41 |
+
elif "connection" in error_msg.lower():
|
42 |
+
return None, "❌ 无法连接到官方Space,请检查网络"
|
43 |
+
elif "queue" in error_msg.lower():
|
44 |
+
return None, "⏳ 官方Space繁忙,请稍后重试"
|
45 |
+
else:
|
46 |
+
return None, f"❌ API调用错误: {error_msg}"
|
47 |
+
|
48 |
+
def call_huggingface_inference_api(video_file, text_prompt):
|
49 |
+
"""调用Hugging Face Inference API"""
|
50 |
+
try:
|
51 |
+
logger.info("尝试Hugging Face Inference API...")
|
52 |
+
|
53 |
+
API_URL = "https://api-inference.huggingface.co/models/tencent/HunyuanVideo-Foley"
|
54 |
+
|
55 |
+
# 读取视频文件
|
56 |
+
with open(video_file, "rb") as f:
|
57 |
+
video_data = f.read()
|
58 |
+
|
59 |
+
# 准备请求数据
|
60 |
+
headers = {
|
61 |
+
"Authorization": f"Bearer {os.environ.get('HF_TOKEN', '')}",
|
62 |
+
}
|
63 |
+
|
64 |
+
# 发送请求
|
65 |
+
response = requests.post(
|
66 |
+
API_URL,
|
67 |
+
headers=headers,
|
68 |
+
json={"inputs": {"video": base64.b64encode(video_data).decode(), "text": text_prompt}},
|
69 |
+
timeout=300
|
70 |
+
)
|
71 |
+
|
72 |
+
if response.status_code == 200:
|
73 |
+
# 保存结果
|
74 |
+
temp_dir = tempfile.mkdtemp()
|
75 |
+
audio_path = os.path.join(temp_dir, "generated_audio.wav")
|
76 |
+
with open(audio_path, 'wb') as f:
|
77 |
+
f.write(response.content)
|
78 |
+
return [audio_path], "✅ 通过Hugging Face API生成成功!"
|
79 |
+
else:
|
80 |
+
logger.error(f"HF API错误: {response.status_code}")
|
81 |
+
return None, f"❌ Hugging Face API返回错误: {response.status_code}"
|
82 |
+
|
83 |
+
except Exception as e:
|
84 |
+
logger.error(f"HF API调用失败: {str(e)}")
|
85 |
+
return None, f"❌ Hugging Face API调用失败: {str(e)}"
|
86 |
+
|
87 |
+
def try_alternative_apis(video_file, text_prompt):
|
88 |
+
"""尝试其他可能的API服务"""
|
89 |
+
|
90 |
+
# 1. 尝试通过公开的demo接口
|
91 |
+
try:
|
92 |
+
logger.info("尝试demo接口...")
|
93 |
+
|
94 |
+
# 这里可以尝试其他公开的API服务
|
95 |
+
# 比如Replicate、RunPod等
|
96 |
+
|
97 |
+
return None, "❌ 暂无可用的替代API服务"
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
return None, f"❌ 替代API调用失败: {str(e)}"
|
101 |
+
|
102 |
+
def smart_api_inference(video_file, text_prompt, guidance_scale=4.5, inference_steps=50, sample_nums=1):
|
103 |
+
"""智能API推理 - 尝试多种API调用方式"""
|
104 |
+
|
105 |
+
if video_file is None:
|
106 |
+
return [], "❌ 请上传视频文件!"
|
107 |
+
|
108 |
+
if not text_prompt:
|
109 |
+
text_prompt = "audio for this video"
|
110 |
+
|
111 |
+
logger.info(f"开始API推理: {video_file}")
|
112 |
+
logger.info(f"文本提示: {text_prompt}")
|
113 |
+
|
114 |
+
status_updates = []
|
115 |
+
|
116 |
+
# 方法1: 尝试Gradio Client (最可能成功)
|
117 |
+
status_updates.append("🔄 尝试连接官方Space API...")
|
118 |
+
try:
|
119 |
+
result, status = call_gradio_client_api(
|
120 |
+
video_file, text_prompt, guidance_scale, inference_steps, sample_nums
|
121 |
+
)
|
122 |
+
if result:
|
123 |
+
return result, "\n".join(status_updates + [status])
|
124 |
+
status_updates.append(status)
|
125 |
+
except ImportError:
|
126 |
+
status_updates.append("⚠️ gradio_client未安装,跳过官方API调用")
|
127 |
+
|
128 |
+
# 方法2: 尝试Hugging Face Inference API
|
129 |
+
status_updates.append("🔄 尝试Hugging Face Inference API...")
|
130 |
+
result, status = call_huggingface_inference_api(video_file, text_prompt)
|
131 |
+
if result:
|
132 |
+
return result, "\n".join(status_updates + [status])
|
133 |
+
status_updates.append(status)
|
134 |
+
|
135 |
+
# 方法3: 尝试其他API
|
136 |
+
status_updates.append("🔄 尝试替代API服务...")
|
137 |
+
result, status = try_alternative_apis(video_file, text_prompt)
|
138 |
+
status_updates.append(status)
|
139 |
+
|
140 |
+
# 所有方法都失败了
|
141 |
+
final_message = "\n".join(status_updates + [
|
142 |
+
"",
|
143 |
+
"💡 **解决方案建议:**",
|
144 |
+
"• 安装 gradio_client: pip install gradio_client",
|
145 |
+
"• 配置 HF_TOKEN 环境变量",
|
146 |
+
"• 等待官方Space负载降低",
|
147 |
+
"• 本地运行完整模型(需24GB+ RAM)",
|
148 |
+
"",
|
149 |
+
"🔗 **官方Space**: https://huggingface.co/spaces/tencent/HunyuanVideo-Foley"
|
150 |
+
])
|
151 |
+
|
152 |
+
return [], final_message
|
153 |
+
|
154 |
+
def create_real_api_interface():
|
155 |
+
"""创建真实API调用界面"""
|
156 |
+
|
157 |
+
css = """
|
158 |
+
.api-status {
|
159 |
+
background: #f0f8ff;
|
160 |
+
border: 2px solid #4169e1;
|
161 |
+
border-radius: 10px;
|
162 |
+
padding: 1rem;
|
163 |
+
margin: 1rem 0;
|
164 |
+
color: #191970;
|
165 |
+
}
|
166 |
+
"""
|
167 |
+
|
168 |
+
with gr.Blocks(css=css, title="HunyuanVideo-Foley API Client") as app:
|
169 |
+
|
170 |
+
# Header
|
171 |
+
gr.HTML("""
|
172 |
+
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 20px; margin-bottom: 2rem; color: white;">
|
173 |
+
<h1>🎵 HunyuanVideo-Foley</h1>
|
174 |
+
<p>API客户端 - 调用真实模型推理</p>
|
175 |
+
</div>
|
176 |
+
""")
|
177 |
+
|
178 |
+
# API Status Notice
|
179 |
+
gr.HTML("""
|
180 |
+
<div class="api-status">
|
181 |
+
<strong>🌐 真实API调用模式:</strong> 这个版本会通过API调用真实的HunyuanVideo-Foley模型进行推理。
|
182 |
+
<br><strong>优点:</strong> 真实AI音频生成,无需本地大内存
|
183 |
+
<br><strong>缺点:</strong> 依赖外部服务可用性,可能需要等待队列
|
184 |
+
</div>
|
185 |
+
""")
|
186 |
+
|
187 |
+
with gr.Row():
|
188 |
+
# 输入区域
|
189 |
+
with gr.Column(scale=1):
|
190 |
+
gr.Markdown("### 📹 视频输入")
|
191 |
+
|
192 |
+
video_input = gr.Video(
|
193 |
+
label="上传视频",
|
194 |
+
info="支持MP4、AVI、MOV等格式"
|
195 |
+
)
|
196 |
+
|
197 |
+
text_input = gr.Textbox(
|
198 |
+
label="🎯 音频描述",
|
199 |
+
placeholder="描述你想要的音频效果,例如:脚步声、雨声、车辆行驶等",
|
200 |
+
lines=3,
|
201 |
+
value="audio sound effects for this video"
|
202 |
+
)
|
203 |
+
|
204 |
+
with gr.Row():
|
205 |
+
guidance_scale = gr.Slider(
|
206 |
+
minimum=1.0,
|
207 |
+
maximum=10.0,
|
208 |
+
value=4.5,
|
209 |
+
step=0.1,
|
210 |
+
label="🎚️ CFG Scale"
|
211 |
+
)
|
212 |
+
|
213 |
+
inference_steps = gr.Slider(
|
214 |
+
minimum=10,
|
215 |
+
maximum=100,
|
216 |
+
value=50,
|
217 |
+
step=5,
|
218 |
+
label="⚡ 推理步数"
|
219 |
+
)
|
220 |
+
|
221 |
+
sample_nums = gr.Slider(
|
222 |
+
minimum=1,
|
223 |
+
maximum=6,
|
224 |
+
value=1,
|
225 |
+
step=1,
|
226 |
+
label="🎲 样本数量"
|
227 |
+
)
|
228 |
+
|
229 |
+
generate_btn = gr.Button(
|
230 |
+
"🎵 调用API生成音频",
|
231 |
+
variant="primary",
|
232 |
+
size="lg"
|
233 |
+
)
|
234 |
+
|
235 |
+
# 输出区域
|
236 |
+
with gr.Column(scale=1):
|
237 |
+
gr.Markdown("### 🎵 生成结果")
|
238 |
+
|
239 |
+
audio_outputs = []
|
240 |
+
for i in range(6):
|
241 |
+
audio_output = gr.Audio(
|
242 |
+
label=f"样本 {i+1}",
|
243 |
+
visible=(i == 0) # 只显示第一个
|
244 |
+
)
|
245 |
+
audio_outputs.append(audio_output)
|
246 |
+
|
247 |
+
status_output = gr.Textbox(
|
248 |
+
label="API状态",
|
249 |
+
interactive=False,
|
250 |
+
lines=10,
|
251 |
+
placeholder="等待API调用..."
|
252 |
+
)
|
253 |
+
|
254 |
+
# 事件处理
|
255 |
+
def process_with_api(video_file, text_prompt, guidance_scale, inference_steps, sample_nums):
|
256 |
+
# 调用API推理
|
257 |
+
results, status_msg = smart_api_inference(
|
258 |
+
video_file, text_prompt, guidance_scale, inference_steps, int(sample_nums)
|
259 |
+
)
|
260 |
+
|
261 |
+
# 准备输出
|
262 |
+
outputs = [None] * 6
|
263 |
+
visibilities = [False] * 6
|
264 |
+
|
265 |
+
if results and isinstance(results, list):
|
266 |
+
for i, result in enumerate(results[:6]):
|
267 |
+
outputs[i] = result
|
268 |
+
visibilities[i] = True
|
269 |
+
|
270 |
+
return outputs + visibilities + [status_msg]
|
271 |
+
|
272 |
+
# 动态显示样本数量
|
273 |
+
def update_visibility(sample_nums):
|
274 |
+
sample_nums = int(sample_nums)
|
275 |
+
return [gr.update(visible=(i < sample_nums)) for i in range(6)]
|
276 |
+
|
277 |
+
# 连���事件
|
278 |
+
sample_nums.change(
|
279 |
+
fn=update_visibility,
|
280 |
+
inputs=[sample_nums],
|
281 |
+
outputs=audio_outputs
|
282 |
+
)
|
283 |
+
|
284 |
+
generate_btn.click(
|
285 |
+
fn=process_with_api,
|
286 |
+
inputs=[video_input, text_input, guidance_scale, inference_steps, sample_nums],
|
287 |
+
outputs=audio_outputs + [gr.update(visible=(i < 6)) for i in range(6)] + [status_output]
|
288 |
+
)
|
289 |
+
|
290 |
+
# Footer
|
291 |
+
gr.HTML("""
|
292 |
+
<div style="text-align: center; padding: 2rem; color: #666; border-top: 1px solid #eee; margin-top: 2rem;">
|
293 |
+
<p><strong>📡 API调用版本</strong> - 通过网络调用真实模型进行推理</p>
|
294 |
+
<p>🔗 官方Space: <a href="https://huggingface.co/spaces/tencent/HunyuanVideo-Foley" target="_blank">tencent/HunyuanVideo-Foley</a></p>
|
295 |
+
<p>⚠️ 需要安装: <code>pip install gradio_client</code></p>
|
296 |
+
</div>
|
297 |
+
""")
|
298 |
+
|
299 |
+
return app
|
300 |
+
|
301 |
+
if __name__ == "__main__":
|
302 |
+
# 设置日志
|
303 |
+
logger.remove()
|
304 |
+
logger.add(lambda msg: print(msg, end=''), level="INFO")
|
305 |
+
|
306 |
+
logger.info("启动 HunyuanVideo-Foley API 客户端...")
|
307 |
+
|
308 |
+
# 检查依赖
|
309 |
+
try:
|
310 |
+
import gradio_client
|
311 |
+
logger.info("✅ gradio_client 已安装")
|
312 |
+
except ImportError:
|
313 |
+
logger.warning("⚠️ gradio_client 未安装,API调用功能可能受限")
|
314 |
+
|
315 |
+
# 创建并启动应用
|
316 |
+
app = create_real_api_interface()
|
317 |
+
|
318 |
+
logger.info("API客户端就绪,准备调用真实模型...")
|
319 |
+
|
320 |
+
app.launch(
|
321 |
+
server_name="0.0.0.0",
|
322 |
+
server_port=7860,
|
323 |
+
share=False,
|
324 |
+
debug=False,
|
325 |
+
show_error=True
|
326 |
+
)
|
requirements.txt
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
-
#
|
2 |
-
torch>=2.0.0
|
3 |
-
torchaudio>=2.0.0
|
4 |
-
numpy>=1.21.0
|
5 |
gradio>=4.0.0
|
|
|
|
|
6 |
loguru>=0.6.0
|
7 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
# API调用版本的依赖
|
|
|
|
|
|
|
2 |
gradio>=4.0.0
|
3 |
+
gradio_client>=0.8.0
|
4 |
+
requests>=2.25.0
|
5 |
loguru>=0.6.0
|
6 |
+
numpy>=1.21.0
|
7 |
+
|
8 |
+
# 可选依赖(用于备用功能)
|
9 |
+
torch>=2.0.0
|
10 |
+
torchaudio>=2.0.0
|
requirements_api.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# API调用版本的依赖
|
2 |
+
gradio>=4.0.0
|
3 |
+
gradio_client>=0.8.0
|
4 |
+
requests>=2.25.0
|
5 |
+
loguru>=0.6.0
|
6 |
+
numpy>=1.21.0
|
7 |
+
|
8 |
+
# 可选依赖(用于备用功能)
|
9 |
+
torch>=2.0.0
|
10 |
+
torchaudio>=2.0.0
|