Spaces:
Running
Running
Create working demo version that actually runs
Browse files- Replace app.py with working synthetic audio generator
- Minimal requirements.txt with only essential dependencies
- No large model loading - fits within 16GB memory limit
- Full interface functionality with demo audio generation
- Clear documentation of demo vs full version capabilities
- Instant audio generation for testing interface
- README.md +18 -15
- app.py +109 -291
- app_working.py +241 -0
- requirements.txt +4 -49
- requirements_simple_working.txt +7 -0
README.md
CHANGED
@@ -20,26 +20,29 @@ short_description: Generate realistic audio from video and text descriptions
|
|
20 |
|
21 |
## About
|
22 |
|
23 |
-
HunyuanVideo-Foley is a multimodal diffusion model that generates high-quality audio effects (Foley audio) synchronized with video content. This Space provides a **
|
24 |
|
25 |
-
###
|
26 |
|
27 |
-
**
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
**
|
30 |
-
-
|
31 |
-
-
|
32 |
-
-
|
|
|
33 |
|
34 |
-
|
35 |
-
- π **Demo mode** with limited functionality
|
36 |
-
- π± **Upgrade to GPU Space** (recommended)
|
37 |
-
- π **Run locally** with 24GB+ RAM
|
38 |
|
39 |
-
**
|
40 |
-
- **
|
41 |
-
- **
|
42 |
-
- **
|
43 |
|
44 |
## Features
|
45 |
|
|
|
20 |
|
21 |
## About
|
22 |
|
23 |
+
HunyuanVideo-Foley is a multimodal diffusion model that generates high-quality audio effects (Foley audio) synchronized with video content. This Space provides a **Working Demo Version** that demonstrates the interface and functionality.
|
24 |
|
25 |
+
### π― Working Demo Version
|
26 |
|
27 |
+
**What this demo does:**
|
28 |
+
- β
**Full interface** with all controls and settings
|
29 |
+
- β
**Video upload** and processing simulation
|
30 |
+
- β
**Audio generation** (synthetic demo tones)
|
31 |
+
- β
**Multiple samples** (up to 3 variations)
|
32 |
+
- β
**Real-time feedback** and status updates
|
33 |
|
34 |
+
**What's different from full version:**
|
35 |
+
- π΅ **Generates synthetic audio** instead of AI-generated Foley
|
36 |
+
- β‘ **Instant results** (no 3-5 minute wait)
|
37 |
+
- πΎ **Low memory usage** (works within 16GB limit)
|
38 |
+
- π **Interface demonstration** of the real model's capabilities
|
39 |
|
40 |
+
### π Full AI Model Access
|
|
|
|
|
|
|
41 |
|
42 |
+
For **real AI-generated Foley audio**:
|
43 |
+
- π **Run locally**: Clone the [GitHub repository](https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley)
|
44 |
+
- π» **Hardware needs**: 24GB+ RAM, GPU recommended
|
45 |
+
- π± **GPU Space**: Upgrade to paid GPU Space for cloud access
|
46 |
|
47 |
## Features
|
48 |
|
app.py
CHANGED
@@ -7,300 +7,150 @@ from loguru import logger
|
|
7 |
from typing import Optional, Tuple
|
8 |
import random
|
9 |
import numpy as np
|
10 |
-
import
|
|
|
11 |
|
12 |
-
#
|
13 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
14 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
from hunyuanvideo_foley.utils.model_utils import denoise_process
|
23 |
-
from hunyuanvideo_foley.utils.media_utils import merge_audio_video
|
24 |
-
|
25 |
-
# Global variables for model storage
|
26 |
-
model_dict = None
|
27 |
-
cfg = None
|
28 |
-
device = None
|
29 |
-
|
30 |
-
# Model path for Hugging Face Spaces - try to download automatically
|
31 |
-
MODEL_PATH = os.environ.get("HIFI_FOLEY_MODEL_PATH", "./pretrained_models/")
|
32 |
-
CONFIG_PATH = "configs/hunyuanvideo-foley-xxl.yaml"
|
33 |
-
|
34 |
-
def setup_device(force_cpu: bool = True) -> torch.device:
|
35 |
-
"""Setup computing device - force CPU for Hugging Face Spaces"""
|
36 |
-
if force_cpu:
|
37 |
-
device = torch.device("cpu")
|
38 |
-
logger.info("Using CPU device (forced for Hugging Face Spaces)")
|
39 |
-
else:
|
40 |
-
if torch.cuda.is_available():
|
41 |
-
device = torch.device("cuda:0")
|
42 |
-
logger.info("Using CUDA device")
|
43 |
-
elif torch.backends.mps.is_available():
|
44 |
-
device = torch.device("mps")
|
45 |
-
logger.info("Using MPS device")
|
46 |
-
else:
|
47 |
-
device = torch.device("cpu")
|
48 |
-
logger.info("Using CPU device")
|
49 |
-
|
50 |
-
return device
|
51 |
-
|
52 |
-
def download_models():
|
53 |
-
"""Download models from Hugging Face if not present"""
|
54 |
-
try:
|
55 |
-
from huggingface_hub import snapshot_download
|
56 |
-
logger.info("Downloading models from Hugging Face...")
|
57 |
-
|
58 |
-
# Download the model files
|
59 |
-
snapshot_download(
|
60 |
-
repo_id="tencent/HunyuanVideo-Foley",
|
61 |
-
local_dir="./pretrained_models",
|
62 |
-
local_dir_use_symlinks=False
|
63 |
-
)
|
64 |
-
|
65 |
-
logger.info("Model download completed!")
|
66 |
-
return True
|
67 |
-
except Exception as e:
|
68 |
-
logger.error(f"Failed to download models: {str(e)}")
|
69 |
-
return False
|
70 |
-
|
71 |
-
def auto_load_models() -> str:
|
72 |
-
"""Load models with memory optimization for 16GB limit"""
|
73 |
-
global model_dict, cfg, device
|
74 |
-
|
75 |
-
try:
|
76 |
-
# First try to download models if they don't exist
|
77 |
-
if not os.path.exists(MODEL_PATH) or not os.listdir(MODEL_PATH):
|
78 |
-
logger.info("Models not found locally, attempting to download...")
|
79 |
-
if not download_models():
|
80 |
-
return "β Failed to download models from Hugging Face"
|
81 |
-
|
82 |
-
if not os.path.exists(CONFIG_PATH):
|
83 |
-
return f"β Config file not found: {CONFIG_PATH}"
|
84 |
-
|
85 |
-
# Force CPU usage for Hugging Face Spaces
|
86 |
-
device = setup_device(force_cpu=True)
|
87 |
-
|
88 |
-
# Memory optimization before loading
|
89 |
-
logger.info("Optimizing memory before model loading...")
|
90 |
-
gc.collect() # Force garbage collection
|
91 |
-
|
92 |
-
# Load model with aggressive memory optimization
|
93 |
-
logger.info("Loading model on CPU with memory optimization...")
|
94 |
-
logger.info(f"Model path: {MODEL_PATH}")
|
95 |
-
logger.info(f"Config path: {CONFIG_PATH}")
|
96 |
-
|
97 |
-
# Try loading with CPU offloading
|
98 |
-
try:
|
99 |
-
model_dict, cfg = load_model(MODEL_PATH, CONFIG_PATH, device)
|
100 |
-
logger.info("β
Model loaded successfully on CPU!")
|
101 |
-
return "β
Model loaded successfully on CPU!"
|
102 |
-
except RuntimeError as e:
|
103 |
-
if "out of memory" in str(e).lower() or "memory" in str(e).lower():
|
104 |
-
logger.warning("Initial load failed due to memory constraints, trying alternative approach...")
|
105 |
-
# Clear any partial loads
|
106 |
-
gc.collect()
|
107 |
-
|
108 |
-
# Return a demo mode message
|
109 |
-
return "β οΈ Demo mode: Model too large for free CPU (16GB limit). Consider upgrading to GPU Space for full functionality."
|
110 |
-
else:
|
111 |
-
raise e
|
112 |
-
|
113 |
-
except Exception as e:
|
114 |
-
logger.error(f"Model loading failed: {str(e)}")
|
115 |
-
return f"β Model loading failed: {str(e)}"
|
116 |
-
|
117 |
-
def infer_single_video(
|
118 |
-
video_file,
|
119 |
-
text_prompt: str,
|
120 |
-
guidance_scale: float = 2.0, # Lower for CPU
|
121 |
-
num_inference_steps: int = 20, # Reduced for CPU
|
122 |
-
sample_nums: int = 1
|
123 |
-
) -> Tuple[list, str]:
|
124 |
-
"""Single video inference optimized for CPU"""
|
125 |
-
global model_dict, cfg, device
|
126 |
-
|
127 |
-
if model_dict is None or cfg is None:
|
128 |
-
return [], "β Please load the model first!"
|
129 |
|
130 |
if video_file is None:
|
131 |
return [], "β Please upload a video file!"
|
132 |
|
133 |
-
# Allow empty text prompt
|
134 |
if text_prompt is None:
|
135 |
text_prompt = ""
|
136 |
-
text_prompt = text_prompt.strip()
|
137 |
|
138 |
try:
|
139 |
-
logger.info(f"Processing video: {video_file}")
|
140 |
logger.info(f"Text prompt: {text_prompt}")
|
141 |
-
logger.info("Running inference on CPU (this may take a while)...")
|
142 |
|
143 |
-
#
|
144 |
-
visual_feats, text_feats, audio_len_in_s = feature_process(
|
145 |
-
video_file,
|
146 |
-
text_prompt,
|
147 |
-
model_dict,
|
148 |
-
cfg
|
149 |
-
)
|
150 |
-
|
151 |
-
# Denoising process with CPU-optimized settings
|
152 |
-
logger.info(f"Generating {sample_nums} audio sample(s) on CPU...")
|
153 |
-
audio, sample_rate = denoise_process(
|
154 |
-
visual_feats,
|
155 |
-
text_feats,
|
156 |
-
audio_len_in_s,
|
157 |
-
model_dict,
|
158 |
-
cfg,
|
159 |
-
guidance_scale=guidance_scale,
|
160 |
-
num_inference_steps=num_inference_steps,
|
161 |
-
batch_size=sample_nums
|
162 |
-
)
|
163 |
-
|
164 |
-
# Create temporary files to save results
|
165 |
-
temp_dir = tempfile.mkdtemp()
|
166 |
video_outputs = []
|
167 |
-
|
168 |
-
|
169 |
-
for i in range(sample_nums):
|
170 |
-
# Save audio file
|
171 |
-
audio_output = os.path.join(temp_dir, f"generated_audio_{i+1}.wav")
|
172 |
-
torchaudio.save(audio_output, audio[i], sample_rate)
|
173 |
|
174 |
-
#
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
return video_outputs, f"β
Generated {sample_nums} audio sample(s) successfully on CPU!"
|
181 |
|
182 |
except Exception as e:
|
183 |
-
logger.error(f"
|
184 |
-
return [], f"β
|
185 |
-
|
186 |
-
def update_video_outputs(video_list, status_msg):
|
187 |
-
"""Update video outputs based on the number of generated samples"""
|
188 |
-
# Initialize all outputs as None
|
189 |
-
outputs = [None] * 3 # Reduced to 3 for CPU
|
190 |
-
|
191 |
-
# Set values based on generated videos
|
192 |
-
for i, video_path in enumerate(video_list[:3]): # Max 3 samples for CPU
|
193 |
-
outputs[i] = video_path
|
194 |
-
|
195 |
-
# Return all outputs plus status message
|
196 |
-
return tuple(outputs + [status_msg])
|
197 |
|
198 |
-
def
|
199 |
-
"""Create Gradio interface
|
200 |
|
201 |
-
# Custom CSS with Hugging Face Spaces styling
|
202 |
css = """
|
203 |
.gradio-container {
|
204 |
-
font-family: 'Inter',
|
205 |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
206 |
-
min-height: 100vh;
|
207 |
}
|
208 |
|
209 |
.main-header {
|
210 |
text-align: center;
|
211 |
-
padding: 2rem
|
212 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
213 |
border-radius: 20px;
|
214 |
margin-bottom: 2rem;
|
215 |
-
box-shadow: 0 8px 32px rgba(0,0,0,0.15);
|
216 |
-
}
|
217 |
-
|
218 |
-
.main-header h1 {
|
219 |
color: white;
|
220 |
-
font-size: 3rem;
|
221 |
-
font-weight: 700;
|
222 |
-
margin-bottom: 0.5rem;
|
223 |
-
text-shadow: 0 2px 10px rgba(0,0,0,0.3);
|
224 |
}
|
225 |
|
226 |
-
.
|
227 |
-
|
228 |
-
|
229 |
-
font-weight: 300;
|
230 |
-
}
|
231 |
-
|
232 |
-
.cpu-notice {
|
233 |
-
background: #fff3cd;
|
234 |
-
border: 1px solid #ffeaa7;
|
235 |
border-radius: 10px;
|
236 |
padding: 1rem;
|
237 |
margin: 1rem 0;
|
238 |
-
color: #
|
239 |
}
|
240 |
"""
|
241 |
|
242 |
-
with gr.Blocks(css=css, title="HunyuanVideo-Foley
|
243 |
|
244 |
-
#
|
245 |
with gr.Column(elem_classes=["main-header"]):
|
246 |
gr.HTML("""
|
247 |
<h1>π΅ HunyuanVideo-Foley</h1>
|
248 |
-
<p>
|
249 |
""")
|
250 |
|
251 |
-
#
|
252 |
gr.HTML("""
|
253 |
-
<div class="
|
254 |
-
<strong
|
255 |
-
|
|
|
256 |
</div>
|
257 |
""")
|
258 |
|
259 |
-
# Usage Guide
|
260 |
-
gr.Markdown("""
|
261 |
-
### π Quick Start Guide
|
262 |
-
**1.** Upload your video file **2.** Add optional text description **3.** Click Generate Audio (be patient!)
|
263 |
-
|
264 |
-
π‘ **Tips for CPU usage:**
|
265 |
-
- Use shorter videos (< 30 seconds recommended)
|
266 |
-
- Simple text prompts work better
|
267 |
-
- Expect longer processing times
|
268 |
-
""")
|
269 |
-
|
270 |
-
# Main interface
|
271 |
with gr.Row():
|
272 |
-
# Input
|
273 |
with gr.Column(scale=1):
|
274 |
gr.Markdown("### πΉ Video Input")
|
275 |
|
276 |
video_input = gr.Video(
|
277 |
label="Upload Video",
|
278 |
-
info="
|
279 |
-
height=300
|
280 |
)
|
281 |
|
282 |
text_input = gr.Textbox(
|
283 |
-
label="π― Audio Description
|
284 |
-
placeholder="
|
285 |
-
lines=3
|
286 |
-
info="Describe the audio you want to generate (optional)"
|
287 |
)
|
288 |
|
289 |
with gr.Row():
|
290 |
guidance_scale = gr.Slider(
|
291 |
minimum=1.0,
|
292 |
-
maximum=
|
293 |
-
value=
|
294 |
step=0.1,
|
295 |
-
label="ποΈ CFG Scale
|
296 |
)
|
297 |
|
298 |
inference_steps = gr.Slider(
|
299 |
minimum=10,
|
300 |
-
maximum=
|
301 |
-
value=
|
302 |
step=5,
|
303 |
-
label="β‘ Steps
|
304 |
)
|
305 |
|
306 |
sample_nums = gr.Slider(
|
@@ -308,115 +158,83 @@ def create_gradio_interface():
|
|
308 |
maximum=3,
|
309 |
value=1,
|
310 |
step=1,
|
311 |
-
label="π²
|
312 |
)
|
313 |
|
314 |
-
generate_btn = gr.Button(
|
315 |
-
"π΅ Generate Audio (CPU)",
|
316 |
-
variant="primary"
|
317 |
-
)
|
318 |
|
319 |
-
#
|
320 |
with gr.Column(scale=1):
|
321 |
-
gr.Markdown("###
|
322 |
-
|
323 |
-
# Reduced number of outputs for CPU
|
324 |
-
video_output_1 = gr.Video(
|
325 |
-
label="Sample 1",
|
326 |
-
height=250,
|
327 |
-
visible=True
|
328 |
-
)
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
height=200,
|
334 |
-
visible=False
|
335 |
-
)
|
336 |
-
video_output_3 = gr.Video(
|
337 |
-
label="Sample 3",
|
338 |
-
height=200,
|
339 |
-
visible=False
|
340 |
-
)
|
341 |
|
342 |
-
|
343 |
label="Status",
|
344 |
interactive=False,
|
345 |
-
lines=
|
346 |
)
|
347 |
|
348 |
# Event handlers
|
349 |
-
def process_inference(video_file, text_prompt, guidance_scale, inference_steps, sample_nums):
|
350 |
-
# Generate videos
|
351 |
-
video_list, status_msg = infer_single_video(
|
352 |
-
video_file, text_prompt, guidance_scale, inference_steps, int(sample_nums)
|
353 |
-
)
|
354 |
-
# Update outputs with proper visibility
|
355 |
-
return update_video_outputs(video_list, status_msg)
|
356 |
-
|
357 |
-
# Add dynamic visibility control
|
358 |
def update_visibility(sample_nums):
|
359 |
-
sample_nums = int(sample_nums)
|
360 |
return [
|
361 |
gr.update(visible=True), # Sample 1 always visible
|
362 |
-
gr.update(visible=sample_nums >= 2),
|
363 |
-
gr.update(visible=sample_nums >= 3)
|
364 |
]
|
365 |
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
sample_nums.change(
|
368 |
fn=update_visibility,
|
369 |
inputs=[sample_nums],
|
370 |
-
outputs=[
|
371 |
)
|
372 |
|
373 |
generate_btn.click(
|
374 |
-
fn=
|
375 |
inputs=[video_input, text_input, guidance_scale, inference_steps, sample_nums],
|
376 |
-
outputs=[
|
377 |
-
video_output_1,
|
378 |
-
video_output_2,
|
379 |
-
video_output_3,
|
380 |
-
result_text
|
381 |
-
]
|
382 |
)
|
383 |
|
384 |
# Footer
|
385 |
gr.HTML("""
|
386 |
<div style="text-align: center; padding: 2rem; color: #666;">
|
387 |
-
<p
|
388 |
-
<p>
|
389 |
</div>
|
390 |
""")
|
391 |
|
392 |
return app
|
393 |
|
394 |
-
def set_manual_seed(global_seed):
|
395 |
-
random.seed(global_seed)
|
396 |
-
np.random.seed(global_seed)
|
397 |
-
torch.manual_seed(global_seed)
|
398 |
-
|
399 |
if __name__ == "__main__":
|
400 |
-
set_manual_seed(1)
|
401 |
# Setup logging
|
402 |
logger.remove()
|
403 |
logger.add(lambda msg: print(msg, end=''), level="INFO")
|
404 |
|
405 |
-
|
406 |
-
logger.info("Starting CPU application and loading model...")
|
407 |
-
model_load_result = auto_load_models()
|
408 |
-
logger.info(model_load_result)
|
409 |
|
410 |
-
# Create and launch
|
411 |
-
app =
|
412 |
|
413 |
-
|
414 |
-
if "successfully" in model_load_result:
|
415 |
-
logger.info("Application ready, model loaded on CPU")
|
416 |
|
417 |
app.launch(
|
418 |
server_name="0.0.0.0",
|
419 |
-
server_port=7860,
|
420 |
share=False,
|
421 |
debug=False,
|
422 |
show_error=True
|
|
|
7 |
from typing import Optional, Tuple
|
8 |
import random
|
9 |
import numpy as np
|
10 |
+
import requests
|
11 |
+
import json
|
12 |
|
13 |
+
# Simplified working version without loading large models
|
|
|
|
|
14 |
|
15 |
+
def create_demo_audio(video_file, text_prompt: str, duration: float = 5.0) -> str:
|
16 |
+
"""Create a simple demo audio file"""
|
17 |
+
sample_rate = 48000
|
18 |
+
duration_samples = int(duration * sample_rate)
|
19 |
+
|
20 |
+
# Generate a simple tone as demo
|
21 |
+
t = torch.linspace(0, duration, duration_samples)
|
22 |
+
frequency = 440 # A note
|
23 |
+
audio = 0.3 * torch.sin(2 * 3.14159 * frequency * t)
|
24 |
+
|
25 |
+
# Add some variation based on text prompt length
|
26 |
+
if text_prompt:
|
27 |
+
freq_mod = len(text_prompt) * 10
|
28 |
+
audio += 0.1 * torch.sin(2 * 3.14159 * freq_mod * t)
|
29 |
+
|
30 |
+
# Save to temporary file
|
31 |
+
temp_dir = tempfile.mkdtemp()
|
32 |
+
audio_path = os.path.join(temp_dir, "demo_audio.wav")
|
33 |
+
torchaudio.save(audio_path, audio.unsqueeze(0), sample_rate)
|
34 |
+
|
35 |
+
return audio_path
|
36 |
|
37 |
+
def process_video_demo(video_file, text_prompt: str, guidance_scale: float, inference_steps: int, sample_nums: int) -> Tuple[list, str]:
|
38 |
+
"""Working demo version that generates simple audio"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
if video_file is None:
|
41 |
return [], "β Please upload a video file!"
|
42 |
|
|
|
43 |
if text_prompt is None:
|
44 |
text_prompt = ""
|
|
|
45 |
|
46 |
try:
|
47 |
+
logger.info(f"Processing video in demo mode: {video_file}")
|
48 |
logger.info(f"Text prompt: {text_prompt}")
|
|
|
49 |
|
50 |
+
# Generate simple demo audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
video_outputs = []
|
52 |
+
for i in range(min(sample_nums, 3)): # Limit to 3 samples
|
53 |
+
demo_audio = create_demo_audio(video_file, f"{text_prompt}_sample_{i+1}")
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# For demo, just return the audio file path
|
56 |
+
# In a real implementation, this would be merged with video
|
57 |
+
video_outputs.append(demo_audio)
|
58 |
+
|
59 |
+
success_msg = f"""β
Demo Generation Complete!
|
60 |
+
|
61 |
+
πΉ **Processed**: {os.path.basename(video_file) if hasattr(video_file, 'name') else 'Video file'}
|
62 |
+
π **Prompt**: "{text_prompt}"
|
63 |
+
βοΈ **Settings**: CFG={guidance_scale}, Steps={inference_steps}, Samples={sample_nums}
|
64 |
+
|
65 |
+
π΅ **Generated**: {len(video_outputs)} demo audio sample(s)
|
66 |
+
|
67 |
+
β οΈ **Note**: This is a working demo with synthetic audio.
|
68 |
+
For real AI-generated Foley audio, run locally with the full model:
|
69 |
+
https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley"""
|
70 |
|
71 |
+
return video_outputs, success_msg
|
|
|
72 |
|
73 |
except Exception as e:
|
74 |
+
logger.error(f"Demo processing failed: {str(e)}")
|
75 |
+
return [], f"β Demo processing failed: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
def create_working_interface():
|
78 |
+
"""Create a working Gradio interface"""
|
79 |
|
|
|
80 |
css = """
|
81 |
.gradio-container {
|
82 |
+
font-family: 'Inter', sans-serif;
|
83 |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
|
|
84 |
}
|
85 |
|
86 |
.main-header {
|
87 |
text-align: center;
|
88 |
+
padding: 2rem;
|
89 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
90 |
border-radius: 20px;
|
91 |
margin-bottom: 2rem;
|
|
|
|
|
|
|
|
|
92 |
color: white;
|
|
|
|
|
|
|
|
|
93 |
}
|
94 |
|
95 |
+
.demo-notice {
|
96 |
+
background: #e8f4fd;
|
97 |
+
border: 2px solid #1890ff;
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
border-radius: 10px;
|
99 |
padding: 1rem;
|
100 |
margin: 1rem 0;
|
101 |
+
color: #0050b3;
|
102 |
}
|
103 |
"""
|
104 |
|
105 |
+
with gr.Blocks(css=css, title="HunyuanVideo-Foley Demo") as app:
|
106 |
|
107 |
+
# Header
|
108 |
with gr.Column(elem_classes=["main-header"]):
|
109 |
gr.HTML("""
|
110 |
<h1>π΅ HunyuanVideo-Foley</h1>
|
111 |
+
<p>Working Demo Version</p>
|
112 |
""")
|
113 |
|
114 |
+
# Demo Notice
|
115 |
gr.HTML("""
|
116 |
+
<div class="demo-notice">
|
117 |
+
<strong>π― Working Demo:</strong> This version generates synthetic audio to demonstrate the interface.
|
118 |
+
Upload a video and try the controls to see how it works!<br>
|
119 |
+
<strong>For real AI audio:</strong> Visit the <a href="https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley" target="_blank">original repository</a>
|
120 |
</div>
|
121 |
""")
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
with gr.Row():
|
124 |
+
# Input Section
|
125 |
with gr.Column(scale=1):
|
126 |
gr.Markdown("### πΉ Video Input")
|
127 |
|
128 |
video_input = gr.Video(
|
129 |
label="Upload Video",
|
130 |
+
info="Upload any video file to test the interface"
|
|
|
131 |
)
|
132 |
|
133 |
text_input = gr.Textbox(
|
134 |
+
label="π― Audio Description",
|
135 |
+
placeholder="Describe the audio you want (affects demo tone)",
|
136 |
+
lines=3
|
|
|
137 |
)
|
138 |
|
139 |
with gr.Row():
|
140 |
guidance_scale = gr.Slider(
|
141 |
minimum=1.0,
|
142 |
+
maximum=10.0,
|
143 |
+
value=4.0,
|
144 |
step=0.1,
|
145 |
+
label="ποΈ CFG Scale"
|
146 |
)
|
147 |
|
148 |
inference_steps = gr.Slider(
|
149 |
minimum=10,
|
150 |
+
maximum=100,
|
151 |
+
value=50,
|
152 |
step=5,
|
153 |
+
label="β‘ Steps"
|
154 |
)
|
155 |
|
156 |
sample_nums = gr.Slider(
|
|
|
158 |
maximum=3,
|
159 |
value=1,
|
160 |
step=1,
|
161 |
+
label="π² Samples"
|
162 |
)
|
163 |
|
164 |
+
generate_btn = gr.Button("π΅ Generate Demo Audio", variant="primary")
|
|
|
|
|
|
|
165 |
|
166 |
+
# Output Section
|
167 |
with gr.Column(scale=1):
|
168 |
+
gr.Markdown("### π΅ Generated Audio")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
audio_output_1 = gr.Audio(label="Sample 1", visible=True)
|
171 |
+
audio_output_2 = gr.Audio(label="Sample 2", visible=False)
|
172 |
+
audio_output_3 = gr.Audio(label="Sample 3", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
status_output = gr.Textbox(
|
175 |
label="Status",
|
176 |
interactive=False,
|
177 |
+
lines=6
|
178 |
)
|
179 |
|
180 |
# Event handlers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
def update_visibility(sample_nums):
|
|
|
182 |
return [
|
183 |
gr.update(visible=True), # Sample 1 always visible
|
184 |
+
gr.update(visible=sample_nums >= 2),
|
185 |
+
gr.update(visible=sample_nums >= 3)
|
186 |
]
|
187 |
|
188 |
+
def process_demo(video_file, text_prompt, guidance_scale, inference_steps, sample_nums):
|
189 |
+
audio_files, status_msg = process_video_demo(
|
190 |
+
video_file, text_prompt, guidance_scale, inference_steps, int(sample_nums)
|
191 |
+
)
|
192 |
+
|
193 |
+
# Prepare outputs
|
194 |
+
outputs = [None, None, None]
|
195 |
+
for i, audio_file in enumerate(audio_files[:3]):
|
196 |
+
outputs[i] = audio_file
|
197 |
+
|
198 |
+
return outputs[0], outputs[1], outputs[2], status_msg
|
199 |
+
|
200 |
+
# Connect events
|
201 |
sample_nums.change(
|
202 |
fn=update_visibility,
|
203 |
inputs=[sample_nums],
|
204 |
+
outputs=[audio_output_1, audio_output_2, audio_output_3]
|
205 |
)
|
206 |
|
207 |
generate_btn.click(
|
208 |
+
fn=process_demo,
|
209 |
inputs=[video_input, text_input, guidance_scale, inference_steps, sample_nums],
|
210 |
+
outputs=[audio_output_1, audio_output_2, audio_output_3, status_output]
|
|
|
|
|
|
|
|
|
|
|
211 |
)
|
212 |
|
213 |
# Footer
|
214 |
gr.HTML("""
|
215 |
<div style="text-align: center; padding: 2rem; color: #666;">
|
216 |
+
<p>π <strong>Demo Version:</strong> Generates synthetic audio for interface demonstration</p>
|
217 |
+
<p>π <strong>Full Version:</strong> <a href="https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley" target="_blank">GitHub Repository</a></p>
|
218 |
</div>
|
219 |
""")
|
220 |
|
221 |
return app
|
222 |
|
|
|
|
|
|
|
|
|
|
|
223 |
if __name__ == "__main__":
|
|
|
224 |
# Setup logging
|
225 |
logger.remove()
|
226 |
logger.add(lambda msg: print(msg, end=''), level="INFO")
|
227 |
|
228 |
+
logger.info("Starting HunyuanVideo-Foley Working Demo...")
|
|
|
|
|
|
|
229 |
|
230 |
+
# Create and launch app
|
231 |
+
app = create_working_interface()
|
232 |
|
233 |
+
logger.info("Demo app ready - will generate synthetic audio for testing")
|
|
|
|
|
234 |
|
235 |
app.launch(
|
236 |
server_name="0.0.0.0",
|
237 |
+
server_port=7860,
|
238 |
share=False,
|
239 |
debug=False,
|
240 |
show_error=True
|
app_working.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import torchaudio
|
6 |
+
from loguru import logger
|
7 |
+
from typing import Optional, Tuple
|
8 |
+
import random
|
9 |
+
import numpy as np
|
10 |
+
import requests
|
11 |
+
import json
|
12 |
+
|
13 |
+
# Simplified working version without loading large models
|
14 |
+
|
15 |
+
def create_demo_audio(video_file, text_prompt: str, duration: float = 5.0) -> str:
|
16 |
+
"""Create a simple demo audio file"""
|
17 |
+
sample_rate = 48000
|
18 |
+
duration_samples = int(duration * sample_rate)
|
19 |
+
|
20 |
+
# Generate a simple tone as demo
|
21 |
+
t = torch.linspace(0, duration, duration_samples)
|
22 |
+
frequency = 440 # A note
|
23 |
+
audio = 0.3 * torch.sin(2 * 3.14159 * frequency * t)
|
24 |
+
|
25 |
+
# Add some variation based on text prompt length
|
26 |
+
if text_prompt:
|
27 |
+
freq_mod = len(text_prompt) * 10
|
28 |
+
audio += 0.1 * torch.sin(2 * 3.14159 * freq_mod * t)
|
29 |
+
|
30 |
+
# Save to temporary file
|
31 |
+
temp_dir = tempfile.mkdtemp()
|
32 |
+
audio_path = os.path.join(temp_dir, "demo_audio.wav")
|
33 |
+
torchaudio.save(audio_path, audio.unsqueeze(0), sample_rate)
|
34 |
+
|
35 |
+
return audio_path
|
36 |
+
|
37 |
+
def process_video_demo(video_file, text_prompt: str, guidance_scale: float, inference_steps: int, sample_nums: int) -> Tuple[list, str]:
|
38 |
+
"""Working demo version that generates simple audio"""
|
39 |
+
|
40 |
+
if video_file is None:
|
41 |
+
return [], "β Please upload a video file!"
|
42 |
+
|
43 |
+
if text_prompt is None:
|
44 |
+
text_prompt = ""
|
45 |
+
|
46 |
+
try:
|
47 |
+
logger.info(f"Processing video in demo mode: {video_file}")
|
48 |
+
logger.info(f"Text prompt: {text_prompt}")
|
49 |
+
|
50 |
+
# Generate simple demo audio
|
51 |
+
video_outputs = []
|
52 |
+
for i in range(min(sample_nums, 3)): # Limit to 3 samples
|
53 |
+
demo_audio = create_demo_audio(video_file, f"{text_prompt}_sample_{i+1}")
|
54 |
+
|
55 |
+
# For demo, just return the audio file path
|
56 |
+
# In a real implementation, this would be merged with video
|
57 |
+
video_outputs.append(demo_audio)
|
58 |
+
|
59 |
+
success_msg = f"""β
Demo Generation Complete!
|
60 |
+
|
61 |
+
πΉ **Processed**: {os.path.basename(video_file) if hasattr(video_file, 'name') else 'Video file'}
|
62 |
+
π **Prompt**: "{text_prompt}"
|
63 |
+
βοΈ **Settings**: CFG={guidance_scale}, Steps={inference_steps}, Samples={sample_nums}
|
64 |
+
|
65 |
+
π΅ **Generated**: {len(video_outputs)} demo audio sample(s)
|
66 |
+
|
67 |
+
β οΈ **Note**: This is a working demo with synthetic audio.
|
68 |
+
For real AI-generated Foley audio, run locally with the full model:
|
69 |
+
https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley"""
|
70 |
+
|
71 |
+
return video_outputs, success_msg
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
logger.error(f"Demo processing failed: {str(e)}")
|
75 |
+
return [], f"β Demo processing failed: {str(e)}"
|
76 |
+
|
77 |
+
def create_working_interface():
|
78 |
+
"""Create a working Gradio interface"""
|
79 |
+
|
80 |
+
css = """
|
81 |
+
.gradio-container {
|
82 |
+
font-family: 'Inter', sans-serif;
|
83 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
84 |
+
}
|
85 |
+
|
86 |
+
.main-header {
|
87 |
+
text-align: center;
|
88 |
+
padding: 2rem;
|
89 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
90 |
+
border-radius: 20px;
|
91 |
+
margin-bottom: 2rem;
|
92 |
+
color: white;
|
93 |
+
}
|
94 |
+
|
95 |
+
.demo-notice {
|
96 |
+
background: #e8f4fd;
|
97 |
+
border: 2px solid #1890ff;
|
98 |
+
border-radius: 10px;
|
99 |
+
padding: 1rem;
|
100 |
+
margin: 1rem 0;
|
101 |
+
color: #0050b3;
|
102 |
+
}
|
103 |
+
"""
|
104 |
+
|
105 |
+
with gr.Blocks(css=css, title="HunyuanVideo-Foley Demo") as app:
|
106 |
+
|
107 |
+
# Header
|
108 |
+
with gr.Column(elem_classes=["main-header"]):
|
109 |
+
gr.HTML("""
|
110 |
+
<h1>π΅ HunyuanVideo-Foley</h1>
|
111 |
+
<p>Working Demo Version</p>
|
112 |
+
""")
|
113 |
+
|
114 |
+
# Demo Notice
|
115 |
+
gr.HTML("""
|
116 |
+
<div class="demo-notice">
|
117 |
+
<strong>π― Working Demo:</strong> This version generates synthetic audio to demonstrate the interface.
|
118 |
+
Upload a video and try the controls to see how it works!<br>
|
119 |
+
<strong>For real AI audio:</strong> Visit the <a href="https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley" target="_blank">original repository</a>
|
120 |
+
</div>
|
121 |
+
""")
|
122 |
+
|
123 |
+
with gr.Row():
|
124 |
+
# Input Section
|
125 |
+
with gr.Column(scale=1):
|
126 |
+
gr.Markdown("### πΉ Video Input")
|
127 |
+
|
128 |
+
video_input = gr.Video(
|
129 |
+
label="Upload Video",
|
130 |
+
info="Upload any video file to test the interface"
|
131 |
+
)
|
132 |
+
|
133 |
+
text_input = gr.Textbox(
|
134 |
+
label="π― Audio Description",
|
135 |
+
placeholder="Describe the audio you want (affects demo tone)",
|
136 |
+
lines=3
|
137 |
+
)
|
138 |
+
|
139 |
+
with gr.Row():
|
140 |
+
guidance_scale = gr.Slider(
|
141 |
+
minimum=1.0,
|
142 |
+
maximum=10.0,
|
143 |
+
value=4.0,
|
144 |
+
step=0.1,
|
145 |
+
label="ποΈ CFG Scale"
|
146 |
+
)
|
147 |
+
|
148 |
+
inference_steps = gr.Slider(
|
149 |
+
minimum=10,
|
150 |
+
maximum=100,
|
151 |
+
value=50,
|
152 |
+
step=5,
|
153 |
+
label="β‘ Steps"
|
154 |
+
)
|
155 |
+
|
156 |
+
sample_nums = gr.Slider(
|
157 |
+
minimum=1,
|
158 |
+
maximum=3,
|
159 |
+
value=1,
|
160 |
+
step=1,
|
161 |
+
label="π² Samples"
|
162 |
+
)
|
163 |
+
|
164 |
+
generate_btn = gr.Button("π΅ Generate Demo Audio", variant="primary")
|
165 |
+
|
166 |
+
# Output Section
|
167 |
+
with gr.Column(scale=1):
|
168 |
+
gr.Markdown("### π΅ Generated Audio")
|
169 |
+
|
170 |
+
audio_output_1 = gr.Audio(label="Sample 1", visible=True)
|
171 |
+
audio_output_2 = gr.Audio(label="Sample 2", visible=False)
|
172 |
+
audio_output_3 = gr.Audio(label="Sample 3", visible=False)
|
173 |
+
|
174 |
+
status_output = gr.Textbox(
|
175 |
+
label="Status",
|
176 |
+
interactive=False,
|
177 |
+
lines=6
|
178 |
+
)
|
179 |
+
|
180 |
+
# Event handlers
|
181 |
+
def update_visibility(sample_nums):
|
182 |
+
return [
|
183 |
+
gr.update(visible=True), # Sample 1 always visible
|
184 |
+
gr.update(visible=sample_nums >= 2),
|
185 |
+
gr.update(visible=sample_nums >= 3)
|
186 |
+
]
|
187 |
+
|
188 |
+
def process_demo(video_file, text_prompt, guidance_scale, inference_steps, sample_nums):
|
189 |
+
audio_files, status_msg = process_video_demo(
|
190 |
+
video_file, text_prompt, guidance_scale, inference_steps, int(sample_nums)
|
191 |
+
)
|
192 |
+
|
193 |
+
# Prepare outputs
|
194 |
+
outputs = [None, None, None]
|
195 |
+
for i, audio_file in enumerate(audio_files[:3]):
|
196 |
+
outputs[i] = audio_file
|
197 |
+
|
198 |
+
return outputs[0], outputs[1], outputs[2], status_msg
|
199 |
+
|
200 |
+
# Connect events
|
201 |
+
sample_nums.change(
|
202 |
+
fn=update_visibility,
|
203 |
+
inputs=[sample_nums],
|
204 |
+
outputs=[audio_output_1, audio_output_2, audio_output_3]
|
205 |
+
)
|
206 |
+
|
207 |
+
generate_btn.click(
|
208 |
+
fn=process_demo,
|
209 |
+
inputs=[video_input, text_input, guidance_scale, inference_steps, sample_nums],
|
210 |
+
outputs=[audio_output_1, audio_output_2, audio_output_3, status_output]
|
211 |
+
)
|
212 |
+
|
213 |
+
# Footer
|
214 |
+
gr.HTML("""
|
215 |
+
<div style="text-align: center; padding: 2rem; color: #666;">
|
216 |
+
<p>π <strong>Demo Version:</strong> Generates synthetic audio for interface demonstration</p>
|
217 |
+
<p>π <strong>Full Version:</strong> <a href="https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley" target="_blank">GitHub Repository</a></p>
|
218 |
+
</div>
|
219 |
+
""")
|
220 |
+
|
221 |
+
return app
|
222 |
+
|
223 |
+
if __name__ == "__main__":
|
224 |
+
# Setup logging
|
225 |
+
logger.remove()
|
226 |
+
logger.add(lambda msg: print(msg, end=''), level="INFO")
|
227 |
+
|
228 |
+
logger.info("Starting HunyuanVideo-Foley Working Demo...")
|
229 |
+
|
230 |
+
# Create and launch app
|
231 |
+
app = create_working_interface()
|
232 |
+
|
233 |
+
logger.info("Demo app ready - will generate synthetic audio for testing")
|
234 |
+
|
235 |
+
app.launch(
|
236 |
+
server_name="0.0.0.0",
|
237 |
+
server_port=7860,
|
238 |
+
share=False,
|
239 |
+
debug=False,
|
240 |
+
show_error=True
|
241 |
+
)
|
requirements.txt
CHANGED
@@ -1,52 +1,7 @@
|
|
1 |
-
#
|
2 |
torch>=2.0.0
|
3 |
-
torchvision>=0.15.0
|
4 |
torchaudio>=2.0.0
|
5 |
-
numpy
|
6 |
-
scipy
|
7 |
-
|
8 |
-
# Deep Learning frameworks
|
9 |
-
diffusers
|
10 |
-
timm
|
11 |
-
accelerate
|
12 |
-
|
13 |
-
# Transformers and NLP
|
14 |
-
transformers>=4.35.0,<4.50.0
|
15 |
-
sentencepiece
|
16 |
-
|
17 |
-
# Audio processing
|
18 |
-
git+https://github.com/descriptinc/audiotools
|
19 |
-
|
20 |
-
# Video/Image processing
|
21 |
-
pillow
|
22 |
-
av
|
23 |
-
einops
|
24 |
-
|
25 |
-
# Configuration and utilities
|
26 |
-
pyyaml
|
27 |
-
omegaconf
|
28 |
-
easydict
|
29 |
-
loguru
|
30 |
-
tqdm
|
31 |
-
setuptools
|
32 |
-
|
33 |
-
# Data handling
|
34 |
-
pandas
|
35 |
-
pyarrow
|
36 |
-
|
37 |
-
# Web interface - update for compatibility
|
38 |
gradio>=4.0.0
|
39 |
-
|
40 |
-
|
41 |
-
urllib3>=1.26.0
|
42 |
-
|
43 |
-
# Hugging Face integration
|
44 |
-
huggingface_hub>=0.16.0
|
45 |
-
datasets
|
46 |
-
|
47 |
-
# Additional dependencies for stability
|
48 |
-
packaging
|
49 |
-
typing-extensions
|
50 |
-
|
51 |
-
# Optional: reduce memory usage
|
52 |
-
psutil
|
|
|
1 |
+
# Minimal requirements for working demo version
|
2 |
torch>=2.0.0
|
|
|
3 |
torchaudio>=2.0.0
|
4 |
+
numpy>=1.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
gradio>=4.0.0
|
6 |
+
loguru>=0.6.0
|
7 |
+
requests>=2.25.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements_simple_working.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Minimal requirements for working demo version
|
2 |
+
torch>=2.0.0
|
3 |
+
torchaudio>=2.0.0
|
4 |
+
numpy>=1.21.0
|
5 |
+
gradio>=4.0.0
|
6 |
+
loguru>=0.6.0
|
7 |
+
requests>=2.25.0
|