Spaces:
Running
Running
# modified from https://github.com/SWivid/F5-TTS/blob/main/src/f5_tts/model/backbones/dit.py | |
""" | |
ein notation: | |
b - batch | |
n - sequence | |
nt - text sequence | |
nw - raw wave length | |
d - dimension | |
""" | |
from __future__ import annotations | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from x_transformers.x_transformers import RotaryEmbedding | |
from .modules import ( | |
AdaLayerNormZero_Final, | |
ConvNeXtV2Block, | |
ConvPositionEmbedding, | |
DiTBlock, | |
TimestepEmbedding, | |
get_pos_embed_indices, | |
precompute_freqs_cis, | |
) | |
# Text embedding | |
class TextEmbedding(nn.Module): | |
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2): | |
super().__init__() | |
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token | |
if conv_layers > 0: | |
self.extra_modeling = True | |
self.precompute_max_pos = 4096 # ~44s of 24khz audio | |
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False) | |
self.text_blocks = nn.Sequential( | |
*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)] | |
) | |
else: | |
self.extra_modeling = False | |
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722 | |
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx() | |
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens | |
batch, text_len = text.shape[0], text.shape[1] | |
text = F.pad(text, (0, seq_len - text_len), value=0) | |
for idx, _drop in enumerate(drop_text): # cfg for text | |
if _drop: | |
text[idx] = torch.zeros_like(text[idx]) | |
text = self.text_embed(text) # b n -> b n d | |
# possible extra modeling | |
if self.extra_modeling: | |
# sinus pos emb | |
batch_start = torch.zeros((batch,), dtype=torch.long) | |
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos) | |
text_pos_embed = self.freqs_cis[pos_idx] | |
text = text + text_pos_embed | |
# convnextv2 blocks | |
text = self.text_blocks(text) | |
return text | |
# noised input audio and context mixing embedding | |
class InputEmbedding(nn.Module): | |
def __init__(self, mel_dim, text_dim, out_dim): | |
super().__init__() | |
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim) | |
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim) | |
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False): # noqa: F722 | |
for idx, _drop in enumerate(drop_audio_cond): # cfg for cond audio | |
if _drop: | |
cond[idx] = torch.zeros_like(cond[idx]) | |
x = self.proj(torch.cat((x, cond, text_embed), dim=-1)) | |
x = self.conv_pos_embed(x) + x | |
return x | |
class InputEmbeddingO(nn.Module): | |
def __init__(self, mel_dim, text_dim, out_dim): | |
super().__init__() | |
self.proj = nn.Linear(mel_dim + 512 + text_dim + 192 + 32, out_dim) | |
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim) | |
def forward( | |
self, | |
x: float["b n d"], # noqa: F722 | |
text_emb: float["b n d"], # noqa: F722 | |
video_emb: float["b n d"], # noqa: F722 | |
spk_emb: float["b n d"], # noqa: F722 | |
caption_emb: float["b n d"], # noqa: F722 | |
): | |
x = self.proj(torch.cat((x, text_emb, video_emb, spk_emb, caption_emb), dim=-1)) | |
x = self.conv_pos_embed(x) + x | |
return x | |
# Transformer backbone using DiT blocks | |
class DiT(nn.Module): | |
def __init__( | |
self, | |
*, | |
dim, | |
depth=8, | |
heads=8, | |
dim_head=64, | |
dropout=0.1, | |
ff_mult=4, | |
mel_dim=100, | |
text_num_embeds=256, | |
text_dim=None, | |
conv_layers=0, | |
long_skip_connection=False, | |
): | |
super().__init__() | |
self.time_embed = TimestepEmbedding(dim) | |
if text_dim is None: | |
text_dim = mel_dim | |
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers) | |
self.input_embed = InputEmbedding(mel_dim, text_dim, dim) | |
self.rotary_embed = RotaryEmbedding(dim_head) | |
self.dim = dim | |
self.depth = depth | |
self.transformer_blocks = nn.ModuleList( | |
[DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout) for _ in range(depth)] | |
) | |
self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None | |
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation | |
self.proj_out = nn.Linear(dim, mel_dim) | |
def forward( | |
self, | |
x: float["b n d"], # nosied input audio # noqa: F722 | |
cond: float["b n d"], # masked cond audio # noqa: F722 | |
text: int["b nt"], # text # noqa: F722 | |
time: float["b"] | float[""], # time step # noqa: F821 F722 | |
drop_audio_cond, # cfg for cond audio | |
drop_text, # cfg for text | |
mask: bool["b n"] | None = None, # noqa: F722 | |
controlnet_embeds: float["b n d"] | None = None, # noqa: F722 | |
): | |
batch, seq_len = x.shape[0], x.shape[1] | |
if time.ndim == 0: | |
time = time.repeat(batch) | |
t = self.time_embed(time) | |
text_embed = self.text_embed(text, seq_len, drop_text=drop_text) | |
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond) | |
rope = self.rotary_embed.forward_from_seq_len(seq_len) | |
if self.long_skip_connection is not None: | |
residual = x | |
for i, block in enumerate(self.transformer_blocks): | |
if controlnet_embeds is not None and i < 12: | |
x += controlnet_embeds[i] | |
x = block(x, t, mask=mask, rope=rope) | |
if self.long_skip_connection is not None: | |
x = self.long_skip_connection(torch.cat((x, residual), dim=-1)) | |
x = self.norm_out(x, t) | |
output = self.proj_out(x) | |
return output | |
class ControlNetDiT(nn.Module): | |
def __init__( | |
self, | |
*, | |
dim, | |
depth=8, | |
heads=8, | |
dim_head=64, | |
dropout=0.1, | |
ff_mult=4, | |
mel_dim=100, | |
text_num_embeds=256, | |
text_dim=None, | |
conv_layers=0, | |
long_skip_connection=False, | |
checkpoint_activations=False, | |
duration_predictor=None, | |
): | |
super().__init__() | |
if text_dim is None: | |
text_dim = mel_dim | |
self.time_embed = TimestepEmbedding(dim) | |
self.rotary_embed = RotaryEmbedding(dim_head) | |
self.dim = dim | |
self.depth = depth // 2 + 1 | |
self.transformer_blocks1 = nn.ModuleList( | |
[ | |
DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout) | |
for _ in range(self.depth) | |
] | |
) | |
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers) | |
self.input_embed = InputEmbeddingO(mel_dim, text_dim, dim) | |
self.spk_embed_affine_layer = torch.nn.Linear(192, 192) | |
self.clip_embed_affine_layer = torch.nn.Linear(768, 512) | |
self.caption_embed_affine_layer = torch.nn.Linear(512, 32) | |
self.zero_linear = nn.ModuleList([nn.Linear(dim, dim, bias=False) for _ in range(12)]) | |
for zero_linear in self.zero_linear: | |
nn.init.zeros_(zero_linear.weight) | |
self.duration_predictor = duration_predictor | |
def forward( | |
self, | |
x: float["b n d"], # nosied input audio # noqa: F722 | |
text: int["b nt"], # text # noqa: F722 | |
clip: float["b n d"], # video clip # noqa: F722 | |
spk_emb: float["b d"], # speaker embedding # noqa: F722 | |
time: float["b"] | float[""], # time step # noqa: F821 F722 | |
caption: float["b nt"] | None = None, # caption # noqa: F722 | |
mask: bool["b n"] | None = None, # noqa: F722 | |
lens: int["b"] | None = None, # noqa: F722, F821 | |
return_dur: bool = False, # return duration prediction | |
): | |
batch, seq_len = x.shape[0], x.shape[1] | |
if time.ndim == 0: | |
time = time.repeat(batch) | |
t = self.time_embed(time) | |
clip_emb = F.normalize(clip, dim=-1) | |
clip_emb = self.clip_embed_affine_layer(clip) | |
spk_emb = F.normalize(spk_emb, dim=-1) | |
spk_emb = self.spk_embed_affine_layer(spk_emb) | |
spk_emb = torch.repeat_interleave(spk_emb, seq_len, dim=1) | |
if caption is None: | |
caption = torch.zeros(1, seq_len, 512).to(device=x.device) | |
caption_emb = F.normalize(caption, dim=-1) | |
caption_emb = self.caption_embed_affine_layer(caption_emb) | |
text_embed = self.text_embed(text, seq_len, drop_text=[False]) | |
x = self.input_embed(x, text_embed, clip_emb, spk_emb, caption_emb) | |
rope = self.rotary_embed.forward_from_seq_len(seq_len) | |
info = [] | |
for i, block in enumerate(self.transformer_blocks1): | |
x = block(x, t, mask=mask, rope=rope) # 'b n 1024' | |
info.append(x) | |
out_info = [] | |
for i, linear in enumerate(self.zero_linear): | |
h = linear(info[i]) | |
out_info.append(h) | |
if return_dur and self.duration_predictor is not None: | |
dur_loss = self.duration_predictor(x=x, text=clip_emb, lens=lens) | |
return out_info, dur_loss | |
else: | |
return out_info | |