Spaces:
Sleeping
Sleeping
File size: 9,672 Bytes
9d9ac6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
# modified from https://github.com/SWivid/F5-TTS/blob/main/src/f5_tts/model/backbones/dit.py
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""
from __future__ import annotations
import torch
import torch.nn.functional as F
from torch import nn
from x_transformers.x_transformers import RotaryEmbedding
from .modules import (
AdaLayerNormZero_Final,
ConvNeXtV2Block,
ConvPositionEmbedding,
DiTBlock,
TimestepEmbedding,
get_pos_embed_indices,
precompute_freqs_cis,
)
# Text embedding
class TextEmbedding(nn.Module):
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
super().__init__()
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
if conv_layers > 0:
self.extra_modeling = True
self.precompute_max_pos = 4096 # ~44s of 24khz audio
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
self.text_blocks = nn.Sequential(
*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
)
else:
self.extra_modeling = False
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
batch, text_len = text.shape[0], text.shape[1]
text = F.pad(text, (0, seq_len - text_len), value=0)
for idx, _drop in enumerate(drop_text): # cfg for text
if _drop:
text[idx] = torch.zeros_like(text[idx])
text = self.text_embed(text) # b n -> b n d
# possible extra modeling
if self.extra_modeling:
# sinus pos emb
batch_start = torch.zeros((batch,), dtype=torch.long)
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
text_pos_embed = self.freqs_cis[pos_idx]
text = text + text_pos_embed
# convnextv2 blocks
text = self.text_blocks(text)
return text
# noised input audio and context mixing embedding
class InputEmbedding(nn.Module):
def __init__(self, mel_dim, text_dim, out_dim):
super().__init__()
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False): # noqa: F722
for idx, _drop in enumerate(drop_audio_cond): # cfg for cond audio
if _drop:
cond[idx] = torch.zeros_like(cond[idx])
x = self.proj(torch.cat((x, cond, text_embed), dim=-1))
x = self.conv_pos_embed(x) + x
return x
class InputEmbeddingO(nn.Module):
def __init__(self, mel_dim, text_dim, out_dim):
super().__init__()
self.proj = nn.Linear(mel_dim + 512 + text_dim + 192 + 32, out_dim)
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
def forward(
self,
x: float["b n d"], # noqa: F722
text_emb: float["b n d"], # noqa: F722
video_emb: float["b n d"], # noqa: F722
spk_emb: float["b n d"], # noqa: F722
caption_emb: float["b n d"], # noqa: F722
):
x = self.proj(torch.cat((x, text_emb, video_emb, spk_emb, caption_emb), dim=-1))
x = self.conv_pos_embed(x) + x
return x
# Transformer backbone using DiT blocks
class DiT(nn.Module):
def __init__(
self,
*,
dim,
depth=8,
heads=8,
dim_head=64,
dropout=0.1,
ff_mult=4,
mel_dim=100,
text_num_embeds=256,
text_dim=None,
conv_layers=0,
long_skip_connection=False,
):
super().__init__()
self.time_embed = TimestepEmbedding(dim)
if text_dim is None:
text_dim = mel_dim
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
self.rotary_embed = RotaryEmbedding(dim_head)
self.dim = dim
self.depth = depth
self.transformer_blocks = nn.ModuleList(
[DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout) for _ in range(depth)]
)
self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
self.proj_out = nn.Linear(dim, mel_dim)
def forward(
self,
x: float["b n d"], # nosied input audio # noqa: F722
cond: float["b n d"], # masked cond audio # noqa: F722
text: int["b nt"], # text # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
drop_audio_cond, # cfg for cond audio
drop_text, # cfg for text
mask: bool["b n"] | None = None, # noqa: F722
controlnet_embeds: float["b n d"] | None = None, # noqa: F722
):
batch, seq_len = x.shape[0], x.shape[1]
if time.ndim == 0:
time = time.repeat(batch)
t = self.time_embed(time)
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
rope = self.rotary_embed.forward_from_seq_len(seq_len)
if self.long_skip_connection is not None:
residual = x
for i, block in enumerate(self.transformer_blocks):
if controlnet_embeds is not None and i < 12:
x += controlnet_embeds[i]
x = block(x, t, mask=mask, rope=rope)
if self.long_skip_connection is not None:
x = self.long_skip_connection(torch.cat((x, residual), dim=-1))
x = self.norm_out(x, t)
output = self.proj_out(x)
return output
class ControlNetDiT(nn.Module):
def __init__(
self,
*,
dim,
depth=8,
heads=8,
dim_head=64,
dropout=0.1,
ff_mult=4,
mel_dim=100,
text_num_embeds=256,
text_dim=None,
conv_layers=0,
long_skip_connection=False,
checkpoint_activations=False,
duration_predictor=None,
):
super().__init__()
if text_dim is None:
text_dim = mel_dim
self.time_embed = TimestepEmbedding(dim)
self.rotary_embed = RotaryEmbedding(dim_head)
self.dim = dim
self.depth = depth // 2 + 1
self.transformer_blocks1 = nn.ModuleList(
[
DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout)
for _ in range(self.depth)
]
)
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
self.input_embed = InputEmbeddingO(mel_dim, text_dim, dim)
self.spk_embed_affine_layer = torch.nn.Linear(192, 192)
self.clip_embed_affine_layer = torch.nn.Linear(768, 512)
self.caption_embed_affine_layer = torch.nn.Linear(512, 32)
self.zero_linear = nn.ModuleList([nn.Linear(dim, dim, bias=False) for _ in range(12)])
for zero_linear in self.zero_linear:
nn.init.zeros_(zero_linear.weight)
self.duration_predictor = duration_predictor
def forward(
self,
x: float["b n d"], # nosied input audio # noqa: F722
text: int["b nt"], # text # noqa: F722
clip: float["b n d"], # video clip # noqa: F722
spk_emb: float["b d"], # speaker embedding # noqa: F722
time: float["b"] | float[""], # time step # noqa: F821 F722
caption: float["b nt"] | None = None, # caption # noqa: F722
mask: bool["b n"] | None = None, # noqa: F722
lens: int["b"] | None = None, # noqa: F722, F821
return_dur: bool = False, # return duration prediction
):
batch, seq_len = x.shape[0], x.shape[1]
if time.ndim == 0:
time = time.repeat(batch)
t = self.time_embed(time)
clip_emb = F.normalize(clip, dim=-1)
clip_emb = self.clip_embed_affine_layer(clip)
spk_emb = F.normalize(spk_emb, dim=-1)
spk_emb = self.spk_embed_affine_layer(spk_emb)
spk_emb = torch.repeat_interleave(spk_emb, seq_len, dim=1)
if caption is None:
caption = torch.zeros(1, seq_len, 512).to(device=x.device)
caption_emb = F.normalize(caption, dim=-1)
caption_emb = self.caption_embed_affine_layer(caption_emb)
text_embed = self.text_embed(text, seq_len, drop_text=[False])
x = self.input_embed(x, text_embed, clip_emb, spk_emb, caption_emb)
rope = self.rotary_embed.forward_from_seq_len(seq_len)
info = []
for i, block in enumerate(self.transformer_blocks1):
x = block(x, t, mask=mask, rope=rope) # 'b n 1024'
info.append(x)
out_info = []
for i, linear in enumerate(self.zero_linear):
h = linear(info[i])
out_info.append(h)
if return_dur and self.duration_predictor is not None:
dur_loss = self.duration_predictor(x=x, text=clip_emb, lens=lens)
return out_info, dur_loss
else:
return out_info
|