william1324 commited on
Commit
a5dc391
·
verified ·
1 Parent(s): e4fff6a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -6,6 +6,7 @@ from prophet import Prophet
6
  import matplotlib.pyplot as plt
7
  import gradio as gr
8
 
 
9
  embedder = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
10
  sentiment_model = pipeline(
11
  "text-classification",
@@ -13,6 +14,7 @@ sentiment_model = pipeline(
13
  tokenizer="uer/roberta-base-finetuned-dianping-chinese"
14
  )
15
 
 
16
  def full_pipeline(file, num_clusters):
17
  df = pd.read_csv(file)
18
 
@@ -21,12 +23,13 @@ def full_pipeline(file, num_clusters):
21
  if "timestamp" not in df.columns:
22
  return "❌ 錯誤:CSV 檔案需包含 timestamp 欄位(例如新聞時間)"
23
 
 
24
  texts = df["text"].astype(str).tolist()
25
  embeddings = embedder.encode(texts, show_progress_bar=True)
26
  kmeans = KMeans(n_clusters=num_clusters, random_state=42)
27
  df["topic"] = kmeans.fit_predict(embeddings)
28
 
29
-
30
  sentiments = []
31
  for text in texts:
32
  try:
@@ -45,7 +48,7 @@ def full_pipeline(file, num_clusters):
45
  sentiments.append(sentiment)
46
  df["sentiment"] = sentiments
47
 
48
-
49
  df["timestamp"] = pd.to_datetime(df["timestamp"])
50
  topic0 = df[df["topic"] == 0]
51
  daily_counts = topic0.groupby(df["timestamp"].dt.date).size().reset_index(name="count")
@@ -60,7 +63,7 @@ def full_pipeline(file, num_clusters):
60
  forecast = m.predict(future)
61
  fig = m.plot(forecast)
62
 
63
- # 儲存結果
64
  output_csv = "/tmp/final_output.csv"
65
  output_img = "/tmp/forecast.png"
66
  df.to_csv(output_csv, index=False)
@@ -68,7 +71,7 @@ def full_pipeline(file, num_clusters):
68
 
69
  return output_csv, output_img
70
 
71
- # 3️⃣ Gradio 介面
72
  gr.Interface(
73
  fn=full_pipeline,
74
  inputs=[
@@ -79,6 +82,6 @@ gr.Interface(
79
  gr.File(label="結果 CSV(含 topic, sentiment)"),
80
  gr.Image(label="topic=0 熱度預測圖(Prophet)")
81
  ],
82
- title=,"話題雷達"
83
  description="自動分群、分析情緒,並預測熱度走勢(topic=0 為例)"
84
  ).launch()
 
6
  import matplotlib.pyplot as plt
7
  import gradio as gr
8
 
9
+ # model
10
  embedder = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
11
  sentiment_model = pipeline(
12
  "text-classification",
 
14
  tokenizer="uer/roberta-base-finetuned-dianping-chinese"
15
  )
16
 
17
+ #main
18
  def full_pipeline(file, num_clusters):
19
  df = pd.read_csv(file)
20
 
 
23
  if "timestamp" not in df.columns:
24
  return "❌ 錯誤:CSV 檔案需包含 timestamp 欄位(例如新聞時間)"
25
 
26
+ #降維
27
  texts = df["text"].astype(str).tolist()
28
  embeddings = embedder.encode(texts, show_progress_bar=True)
29
  kmeans = KMeans(n_clusters=num_clusters, random_state=42)
30
  df["topic"] = kmeans.fit_predict(embeddings)
31
 
32
+ # 情緒分析
33
  sentiments = []
34
  for text in texts:
35
  try:
 
48
  sentiments.append(sentiment)
49
  df["sentiment"] = sentiments
50
 
51
+ # 熱度預測
52
  df["timestamp"] = pd.to_datetime(df["timestamp"])
53
  topic0 = df[df["topic"] == 0]
54
  daily_counts = topic0.groupby(df["timestamp"].dt.date).size().reset_index(name="count")
 
63
  forecast = m.predict(future)
64
  fig = m.plot(forecast)
65
 
66
+ #output
67
  output_csv = "/tmp/final_output.csv"
68
  output_img = "/tmp/forecast.png"
69
  df.to_csv(output_csv, index=False)
 
71
 
72
  return output_csv, output_img
73
 
74
+ #gradio
75
  gr.Interface(
76
  fn=full_pipeline,
77
  inputs=[
 
82
  gr.File(label="結果 CSV(含 topic, sentiment)"),
83
  gr.Image(label="topic=0 熱度預測圖(Prophet)")
84
  ],
85
+ title="話題雷達",
86
  description="自動分群、分析情緒,並預測熱度走勢(topic=0 為例)"
87
  ).launch()