Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from prophet import Prophet
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import gradio as gr
|
8 |
|
9 |
-
# 1️⃣ 模型初始化
|
10 |
embedder = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
11 |
sentiment_model = pipeline(
|
12 |
"text-classification",
|
@@ -14,26 +13,20 @@ sentiment_model = pipeline(
|
|
14 |
tokenizer="uer/roberta-base-finetuned-dianping-chinese"
|
15 |
)
|
16 |
|
17 |
-
# 2️⃣ 主處理流程
|
18 |
def full_pipeline(file, num_clusters):
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
try:
|
26 |
-
df = pd.read_csv(file, encoding="big5")
|
27 |
-
except Exception as e:
|
28 |
-
return f"❌ 無法讀取 CSV 檔案,錯誤原因:{str(e)}"
|
29 |
|
30 |
-
# 向量化並聚類
|
31 |
texts = df["text"].astype(str).tolist()
|
32 |
embeddings = embedder.encode(texts, show_progress_bar=True)
|
33 |
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
|
34 |
df["topic"] = kmeans.fit_predict(embeddings)
|
35 |
|
36 |
-
|
37 |
sentiments = []
|
38 |
for text in texts:
|
39 |
try:
|
@@ -52,7 +45,7 @@ except UnicodeDecodeError:
|
|
52 |
sentiments.append(sentiment)
|
53 |
df["sentiment"] = sentiments
|
54 |
|
55 |
-
|
56 |
df["timestamp"] = pd.to_datetime(df["timestamp"])
|
57 |
topic0 = df[df["topic"] == 0]
|
58 |
daily_counts = topic0.groupby(df["timestamp"].dt.date).size().reset_index(name="count")
|
@@ -86,6 +79,6 @@ gr.Interface(
|
|
86 |
gr.File(label="結果 CSV(含 topic, sentiment)"),
|
87 |
gr.Image(label="topic=0 熱度預測圖(Prophet)")
|
88 |
],
|
89 |
-
title
|
90 |
-
description="
|
91 |
).launch()
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import gradio as gr
|
8 |
|
|
|
9 |
embedder = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
10 |
sentiment_model = pipeline(
|
11 |
"text-classification",
|
|
|
13 |
tokenizer="uer/roberta-base-finetuned-dianping-chinese"
|
14 |
)
|
15 |
|
|
|
16 |
def full_pipeline(file, num_clusters):
|
17 |
+
df = pd.read_csv(file)
|
18 |
+
|
19 |
+
if "text" not in df.columns:
|
20 |
+
return "❌ 錯誤:CSV 檔案需包含 text 欄位"
|
21 |
+
if "timestamp" not in df.columns:
|
22 |
+
return "❌ 錯誤:CSV 檔案需包含 timestamp 欄位(例如新聞時間)"
|
|
|
|
|
|
|
|
|
23 |
|
|
|
24 |
texts = df["text"].astype(str).tolist()
|
25 |
embeddings = embedder.encode(texts, show_progress_bar=True)
|
26 |
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
|
27 |
df["topic"] = kmeans.fit_predict(embeddings)
|
28 |
|
29 |
+
|
30 |
sentiments = []
|
31 |
for text in texts:
|
32 |
try:
|
|
|
45 |
sentiments.append(sentiment)
|
46 |
df["sentiment"] = sentiments
|
47 |
|
48 |
+
|
49 |
df["timestamp"] = pd.to_datetime(df["timestamp"])
|
50 |
topic0 = df[df["topic"] == 0]
|
51 |
daily_counts = topic0.groupby(df["timestamp"].dt.date).size().reset_index(name="count")
|
|
|
79 |
gr.File(label="結果 CSV(含 topic, sentiment)"),
|
80 |
gr.Image(label="topic=0 熱度預測圖(Prophet)")
|
81 |
],
|
82 |
+
title=,"話題雷達"
|
83 |
+
description="自動分群、分析情緒,並預測熱度走勢(topic=0 為例)"
|
84 |
).launch()
|