dance-classifier / train.py
waidhoferj's picture
added AST model
e6fd727
raw
history blame
6.44 kB
from torch.utils.data import DataLoader
import pandas as pd
from typing import Callable
from torch import nn
from torch.utils.data import SubsetRandomSampler
from sklearn.model_selection import KFold
import pytorch_lightning as pl
from pytorch_lightning import callbacks as cb
from models.utils import LabelWeightedBCELoss
from models.audio_spectrogram_transformer import train as train_audio_spectrogram_transformer, get_id_label_mapping
from preprocessing.dataset import SongDataset, WaveformTrainingEnvironment
from preprocessing.preprocess import get_examples
from models.residual import ResidualDancer, TrainingEnvironment
import yaml
from preprocessing.dataset import DanceDataModule, WaveformSongDataset, HuggingFaceWaveformSongDataset
from torch.utils.data import random_split
from wakepy import keepawake
import numpy as np
from transformers import ASTFeatureExtractor, AutoFeatureExtractor, ASTConfig, AutoModelForAudioClassification
from argparse import ArgumentParser
import torch
from torch import nn
from sklearn.utils.class_weight import compute_class_weight
def get_training_fn(id:str) -> Callable:
match id:
case "ast_ptl":
return train_ast_lightning
case "ast_hf":
return train_ast
case "residual_dancer":
return train_model
case _:
raise Exception(f"Couldn't find a training function for '{id}'.")
def get_config(filepath:str) -> dict:
with open(filepath, "r") as f:
config = yaml.safe_load(f)
return config
def cross_validation(config, k=5):
df = pd.read_csv("data/songs.csv")
g_config = config["global"]
batch_size = config["data_module"]["batch_size"]
x,y = get_examples(df, "data/samples",class_list=g_config["dance_ids"])
dataset = SongDataset(x,y)
splits=KFold(n_splits=k,shuffle=True,random_state=g_config["seed"])
trainer = pl.Trainer(accelerator=g_config["device"])
for fold, (train_idx,val_idx) in enumerate(splits.split(x,y)):
print(f"Fold {fold+1}")
model = ResidualDancer(n_classes=len(g_config["dance_ids"]))
train_env = TrainingEnvironment(model,nn.BCELoss())
train_sampler = SubsetRandomSampler(train_idx)
test_sampler = SubsetRandomSampler(val_idx)
train_loader = DataLoader(dataset, batch_size=batch_size, sampler=train_sampler)
test_loader = DataLoader(dataset, batch_size=batch_size, sampler=test_sampler)
trainer.fit(train_env, train_loader)
trainer.test(train_env, test_loader)
def train_model(config:dict):
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
pl.seed_everything(SEED, workers=True)
data = DanceDataModule(target_classes=TARGET_CLASSES, **config['data_module'])
model = ResidualDancer(n_classes=len(TARGET_CLASSES), **config['model'])
label_weights = data.get_label_weights().to(DEVICE)
criterion = LabelWeightedBCELoss(label_weights) #nn.CrossEntropyLoss(label_weights)
train_env = TrainingEnvironment(model, criterion, config)
callbacks = [
# cb.LearningRateFinder(update_attr=True),
cb.EarlyStopping("val/loss", patience=5),
cb.StochasticWeightAveraging(1e-2),
cb.RichProgressBar(),
cb.DeviceStatsMonitor(),
]
trainer = pl.Trainer(
callbacks=callbacks,
**config["trainer"]
)
trainer.fit(train_env, datamodule=data)
trainer.test(train_env, datamodule=data)
def train_ast(
config:dict
):
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
dataset_kwargs = config["data_module"]["dataset_kwargs"]
test_proportion = config["data_module"].get("test_proportion", 0.2)
train_proportion = 1. - test_proportion
song_data_path="data/songs_cleaned.csv"
song_audio_path = "data/samples"
pl.seed_everything(SEED, workers=True)
df = pd.read_csv(song_data_path)
x, y = get_examples(df, song_audio_path,class_list=TARGET_CLASSES, multi_label=True)
train_i, test_i = random_split(np.arange(len(x)), [train_proportion, test_proportion])
train_ds = HuggingFaceWaveformSongDataset(x[train_i], y[train_i], **dataset_kwargs, resample_frequency=16000)
test_ds = HuggingFaceWaveformSongDataset(x[test_i], y[test_i], **dataset_kwargs, resample_frequency=16000)
train_audio_spectrogram_transformer(TARGET_CLASSES, train_ds, test_ds, device=DEVICE)
def train_ast_lightning(config:dict):
"""
work on integration between waveform dataset and environment. Should work for both HF and PTL.
"""
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
pl.seed_everything(SEED, workers=True)
data = DanceDataModule(target_classes=TARGET_CLASSES, dataset_cls=WaveformSongDataset, **config['data_module'])
id2label, label2id = get_id_label_mapping(TARGET_CLASSES)
model_checkpoint = "MIT/ast-finetuned-audioset-10-10-0.4593"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_checkpoint)
model = AutoModelForAudioClassification.from_pretrained(
model_checkpoint,
num_labels=len(label2id),
label2id=label2id,
id2label=id2label,
ignore_mismatched_sizes=True
).to(DEVICE)
label_weights = data.get_label_weights().to(DEVICE)
criterion = LabelWeightedBCELoss(label_weights) #nn.CrossEntropyLoss(label_weights)
train_env = WaveformTrainingEnvironment(model, criterion,feature_extractor, config)
callbacks = [
# cb.LearningRateFinder(update_attr=True),
cb.EarlyStopping("val/loss", patience=5),
cb.StochasticWeightAveraging(1e-2),
cb.RichProgressBar()
]
trainer = pl.Trainer(
callbacks=callbacks,
**config["trainer"]
)
trainer.fit(train_env, datamodule=data)
trainer.test(train_env, datamodule=data)
if __name__ == "__main__":
parser = ArgumentParser(description="Trains models on the dance dataset and saves weights.")
parser.add_argument("--config", help="Path to the yaml file that defines the training configuration.", default="models/config/train.yaml")
args = parser.parse_args()
config = get_config(args.config)
training_id = config["global"]["id"]
train = get_training_fn(training_id)
with keepawake():
train(config)