File size: 6,438 Bytes
c914273
 
e6fd727
0030bc6
 
c914273
0030bc6
 
 
e6fd727
 
c914273
0030bc6
 
e6fd727
 
0030bc6
e6fd727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c914273
0030bc6
 
 
 
c914273
e6fd727
0030bc6
c914273
0030bc6
 
 
c914273
0030bc6
 
c914273
 
0030bc6
 
c914273
 
 
 
0030bc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6fd727
 
0030bc6
 
 
 
 
 
 
c914273
7b37b0e
e6fd727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c914273
 
e6fd727
 
 
 
 
 
0030bc6
e6fd727
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from torch.utils.data import DataLoader
import pandas as pd
from typing import Callable
from torch import nn
from torch.utils.data import SubsetRandomSampler
from sklearn.model_selection import KFold
import pytorch_lightning as pl
from pytorch_lightning import callbacks as cb
from models.utils import LabelWeightedBCELoss
from models.audio_spectrogram_transformer import train as train_audio_spectrogram_transformer, get_id_label_mapping
from preprocessing.dataset import SongDataset, WaveformTrainingEnvironment
from preprocessing.preprocess import get_examples
from models.residual import ResidualDancer, TrainingEnvironment
import yaml
from preprocessing.dataset import DanceDataModule, WaveformSongDataset, HuggingFaceWaveformSongDataset
from torch.utils.data import random_split
from wakepy import keepawake
import numpy as np
from transformers import ASTFeatureExtractor, AutoFeatureExtractor, ASTConfig, AutoModelForAudioClassification
from argparse import ArgumentParser



import torch
from torch import nn
from sklearn.utils.class_weight import compute_class_weight

def get_training_fn(id:str) -> Callable:
    match id:
        case "ast_ptl":
            return train_ast_lightning
        case "ast_hf":
            return train_ast
        case "residual_dancer":
            return train_model
        case _:
            raise Exception(f"Couldn't find a training function for '{id}'.")

def get_config(filepath:str) -> dict:
    with open(filepath, "r") as f:
        config = yaml.safe_load(f)
    return config


def cross_validation(config, k=5):
    df = pd.read_csv("data/songs.csv")
    g_config = config["global"]
    batch_size = config["data_module"]["batch_size"]
    x,y = get_examples(df, "data/samples",class_list=g_config["dance_ids"])
    dataset = SongDataset(x,y)
    splits=KFold(n_splits=k,shuffle=True,random_state=g_config["seed"])
    trainer = pl.Trainer(accelerator=g_config["device"])
    for fold, (train_idx,val_idx) in enumerate(splits.split(x,y)):
        print(f"Fold {fold+1}")
        model = ResidualDancer(n_classes=len(g_config["dance_ids"]))
        train_env = TrainingEnvironment(model,nn.BCELoss())
        train_sampler = SubsetRandomSampler(train_idx)
        test_sampler = SubsetRandomSampler(val_idx)
        train_loader = DataLoader(dataset, batch_size=batch_size, sampler=train_sampler)
        test_loader = DataLoader(dataset, batch_size=batch_size, sampler=test_sampler)
        trainer.fit(train_env, train_loader)
        trainer.test(train_env, test_loader)


def train_model(config:dict):
    TARGET_CLASSES = config["global"]["dance_ids"]
    DEVICE = config["global"]["device"]
    SEED = config["global"]["seed"]
    pl.seed_everything(SEED, workers=True)
    data = DanceDataModule(target_classes=TARGET_CLASSES, **config['data_module'])
    model = ResidualDancer(n_classes=len(TARGET_CLASSES), **config['model'])
    label_weights = data.get_label_weights().to(DEVICE)
    criterion = LabelWeightedBCELoss(label_weights) #nn.CrossEntropyLoss(label_weights)
    train_env = TrainingEnvironment(model, criterion, config)
    callbacks = [
        # cb.LearningRateFinder(update_attr=True),
        cb.EarlyStopping("val/loss", patience=5),
        cb.StochasticWeightAveraging(1e-2),
        cb.RichProgressBar(),
        cb.DeviceStatsMonitor(),
    ]
    trainer = pl.Trainer(
        callbacks=callbacks, 
        **config["trainer"]
        )
    trainer.fit(train_env, datamodule=data)
    trainer.test(train_env, datamodule=data)


def train_ast(
    config:dict
):
    TARGET_CLASSES = config["global"]["dance_ids"]
    DEVICE = config["global"]["device"]
    SEED = config["global"]["seed"]
    dataset_kwargs = config["data_module"]["dataset_kwargs"]
    test_proportion = config["data_module"].get("test_proportion", 0.2)
    train_proportion = 1. - test_proportion
    song_data_path="data/songs_cleaned.csv"
    song_audio_path = "data/samples"
    pl.seed_everything(SEED, workers=True)

    df = pd.read_csv(song_data_path)
    x, y = get_examples(df, song_audio_path,class_list=TARGET_CLASSES, multi_label=True)
    train_i, test_i = random_split(np.arange(len(x)), [train_proportion, test_proportion])
    train_ds = HuggingFaceWaveformSongDataset(x[train_i], y[train_i], **dataset_kwargs, resample_frequency=16000)
    test_ds = HuggingFaceWaveformSongDataset(x[test_i], y[test_i], **dataset_kwargs, resample_frequency=16000)
    train_audio_spectrogram_transformer(TARGET_CLASSES, train_ds, test_ds, device=DEVICE)


def train_ast_lightning(config:dict):
    """
    work on integration between waveform dataset and environment. Should work for both HF and PTL.
    """
    TARGET_CLASSES = config["global"]["dance_ids"]
    DEVICE = config["global"]["device"]
    SEED = config["global"]["seed"]
    pl.seed_everything(SEED, workers=True)
    data = DanceDataModule(target_classes=TARGET_CLASSES, dataset_cls=WaveformSongDataset, **config['data_module'])
    id2label, label2id = get_id_label_mapping(TARGET_CLASSES)
    model_checkpoint = "MIT/ast-finetuned-audioset-10-10-0.4593"
    feature_extractor = AutoFeatureExtractor.from_pretrained(model_checkpoint)

    model = AutoModelForAudioClassification.from_pretrained(
    model_checkpoint, 
    num_labels=len(label2id),
    label2id=label2id,
    id2label=id2label,
    ignore_mismatched_sizes=True
).to(DEVICE)
    label_weights = data.get_label_weights().to(DEVICE)
    criterion = LabelWeightedBCELoss(label_weights) #nn.CrossEntropyLoss(label_weights)
    train_env = WaveformTrainingEnvironment(model, criterion,feature_extractor, config)
    callbacks = [
        # cb.LearningRateFinder(update_attr=True),
        cb.EarlyStopping("val/loss", patience=5),
        cb.StochasticWeightAveraging(1e-2),
        cb.RichProgressBar()
    ]
    trainer = pl.Trainer(
        callbacks=callbacks, 
        **config["trainer"]
        )
    trainer.fit(train_env, datamodule=data)
    trainer.test(train_env, datamodule=data)

if __name__ == "__main__":
    parser = ArgumentParser(description="Trains models on the dance dataset and saves weights.")
    parser.add_argument("--config", help="Path to the yaml file that defines the training configuration.", default="models/config/train.yaml")
    args = parser.parse_args()
    config = get_config(args.config)
    training_id = config["global"]["id"]
    train = get_training_fn(training_id)
    with keepawake():
        train(config)