Spaces:
Runtime error
Runtime error
File size: 6,438 Bytes
c914273 e6fd727 0030bc6 c914273 0030bc6 e6fd727 c914273 0030bc6 e6fd727 0030bc6 e6fd727 c914273 0030bc6 c914273 e6fd727 0030bc6 c914273 0030bc6 c914273 0030bc6 c914273 0030bc6 c914273 0030bc6 e6fd727 0030bc6 c914273 7b37b0e e6fd727 c914273 e6fd727 0030bc6 e6fd727 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
from torch.utils.data import DataLoader
import pandas as pd
from typing import Callable
from torch import nn
from torch.utils.data import SubsetRandomSampler
from sklearn.model_selection import KFold
import pytorch_lightning as pl
from pytorch_lightning import callbacks as cb
from models.utils import LabelWeightedBCELoss
from models.audio_spectrogram_transformer import train as train_audio_spectrogram_transformer, get_id_label_mapping
from preprocessing.dataset import SongDataset, WaveformTrainingEnvironment
from preprocessing.preprocess import get_examples
from models.residual import ResidualDancer, TrainingEnvironment
import yaml
from preprocessing.dataset import DanceDataModule, WaveformSongDataset, HuggingFaceWaveformSongDataset
from torch.utils.data import random_split
from wakepy import keepawake
import numpy as np
from transformers import ASTFeatureExtractor, AutoFeatureExtractor, ASTConfig, AutoModelForAudioClassification
from argparse import ArgumentParser
import torch
from torch import nn
from sklearn.utils.class_weight import compute_class_weight
def get_training_fn(id:str) -> Callable:
match id:
case "ast_ptl":
return train_ast_lightning
case "ast_hf":
return train_ast
case "residual_dancer":
return train_model
case _:
raise Exception(f"Couldn't find a training function for '{id}'.")
def get_config(filepath:str) -> dict:
with open(filepath, "r") as f:
config = yaml.safe_load(f)
return config
def cross_validation(config, k=5):
df = pd.read_csv("data/songs.csv")
g_config = config["global"]
batch_size = config["data_module"]["batch_size"]
x,y = get_examples(df, "data/samples",class_list=g_config["dance_ids"])
dataset = SongDataset(x,y)
splits=KFold(n_splits=k,shuffle=True,random_state=g_config["seed"])
trainer = pl.Trainer(accelerator=g_config["device"])
for fold, (train_idx,val_idx) in enumerate(splits.split(x,y)):
print(f"Fold {fold+1}")
model = ResidualDancer(n_classes=len(g_config["dance_ids"]))
train_env = TrainingEnvironment(model,nn.BCELoss())
train_sampler = SubsetRandomSampler(train_idx)
test_sampler = SubsetRandomSampler(val_idx)
train_loader = DataLoader(dataset, batch_size=batch_size, sampler=train_sampler)
test_loader = DataLoader(dataset, batch_size=batch_size, sampler=test_sampler)
trainer.fit(train_env, train_loader)
trainer.test(train_env, test_loader)
def train_model(config:dict):
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
pl.seed_everything(SEED, workers=True)
data = DanceDataModule(target_classes=TARGET_CLASSES, **config['data_module'])
model = ResidualDancer(n_classes=len(TARGET_CLASSES), **config['model'])
label_weights = data.get_label_weights().to(DEVICE)
criterion = LabelWeightedBCELoss(label_weights) #nn.CrossEntropyLoss(label_weights)
train_env = TrainingEnvironment(model, criterion, config)
callbacks = [
# cb.LearningRateFinder(update_attr=True),
cb.EarlyStopping("val/loss", patience=5),
cb.StochasticWeightAveraging(1e-2),
cb.RichProgressBar(),
cb.DeviceStatsMonitor(),
]
trainer = pl.Trainer(
callbacks=callbacks,
**config["trainer"]
)
trainer.fit(train_env, datamodule=data)
trainer.test(train_env, datamodule=data)
def train_ast(
config:dict
):
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
dataset_kwargs = config["data_module"]["dataset_kwargs"]
test_proportion = config["data_module"].get("test_proportion", 0.2)
train_proportion = 1. - test_proportion
song_data_path="data/songs_cleaned.csv"
song_audio_path = "data/samples"
pl.seed_everything(SEED, workers=True)
df = pd.read_csv(song_data_path)
x, y = get_examples(df, song_audio_path,class_list=TARGET_CLASSES, multi_label=True)
train_i, test_i = random_split(np.arange(len(x)), [train_proportion, test_proportion])
train_ds = HuggingFaceWaveformSongDataset(x[train_i], y[train_i], **dataset_kwargs, resample_frequency=16000)
test_ds = HuggingFaceWaveformSongDataset(x[test_i], y[test_i], **dataset_kwargs, resample_frequency=16000)
train_audio_spectrogram_transformer(TARGET_CLASSES, train_ds, test_ds, device=DEVICE)
def train_ast_lightning(config:dict):
"""
work on integration between waveform dataset and environment. Should work for both HF and PTL.
"""
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
pl.seed_everything(SEED, workers=True)
data = DanceDataModule(target_classes=TARGET_CLASSES, dataset_cls=WaveformSongDataset, **config['data_module'])
id2label, label2id = get_id_label_mapping(TARGET_CLASSES)
model_checkpoint = "MIT/ast-finetuned-audioset-10-10-0.4593"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_checkpoint)
model = AutoModelForAudioClassification.from_pretrained(
model_checkpoint,
num_labels=len(label2id),
label2id=label2id,
id2label=id2label,
ignore_mismatched_sizes=True
).to(DEVICE)
label_weights = data.get_label_weights().to(DEVICE)
criterion = LabelWeightedBCELoss(label_weights) #nn.CrossEntropyLoss(label_weights)
train_env = WaveformTrainingEnvironment(model, criterion,feature_extractor, config)
callbacks = [
# cb.LearningRateFinder(update_attr=True),
cb.EarlyStopping("val/loss", patience=5),
cb.StochasticWeightAveraging(1e-2),
cb.RichProgressBar()
]
trainer = pl.Trainer(
callbacks=callbacks,
**config["trainer"]
)
trainer.fit(train_env, datamodule=data)
trainer.test(train_env, datamodule=data)
if __name__ == "__main__":
parser = ArgumentParser(description="Trains models on the dance dataset and saves weights.")
parser.add_argument("--config", help="Path to the yaml file that defines the training configuration.", default="models/config/train.yaml")
args = parser.parse_args()
config = get_config(args.config)
training_id = config["global"]["id"]
train = get_training_fn(training_id)
with keepawake():
train(config) |